Смекни!
smekni.com

Разработка тепловой установки для тепловлажностной обработки бетона (стр. 2 из 4)

Рис 2.Схема распределения темпартур,влагосодержания и давления для периода нагрева в установке с избыточным давлением по сравнению с атмосферным

1-материал,2-днище формы,3-пленка конденсата толщиной δ

U,T,P-кривые распределения влагосодержания,температур и давления соответственно

∆U,∆T,∆P-направление векторов градиентов

qmt,qmv,qmp-частные потоки массы

Рассмотрим воздействие избыточного давления, образующегося внутри материала ,на внутренний тепло- и массо-обмен. По указанной ранее причине в материале возникает избыточное давление ,пропорциональное температуре материала в каждой точке поперечного сечения. Если при атмосферном давлении в установке, это давление на поверхности релаксировалось,т о в данном случае с поверхности на материал и через неплотности в днище будет действовать значительно большее избыточное давление чем внутри материала, поэтому релаксации не будет, а скорее наоборот, давление в материале будет несколько выше чем в процессе нагрева ,поэтому считается что кривая Р будет аналогом кривой Т, соответственно ∆Р1 и ∆Р2 обуславливают возникновение частных потоков массы qmp1 и qmp2 направленных к центру изделий.

Сравнивая сумму частных потоков массы можно отметить, что в установке работающей с избыточным давлением у днища формы бетон должен характеризоваться меньшим влагосодержанием, чем в установке работающей при атмосферном давлении.

Обработанный бетон при избыточном давлении имеет лучшую структуру и более высокие прочностные показатели.

Избыточное давление компенсирует нарушения структуры, возникающие из-за большой неравномерности влагосодержания.

Для повышения температуры и коэффициента теплоотдачи к материалу в установке, работающей на избыточном давлении, применяют вакуумирование или продувку. и тот и другой методы рассчитаны на удаление воздуха и получения среды чистого пара.В этом случае достигается более высокая температура и больший коэффициент теплоотдачи к материалу при одном и том же давлении.

Процесс вакуумирования выглядит так: после загрузки, установку герметизируют и включают вакуум-насос, вакуумирует воздух до достижения 70-75% полного вакуума в течении 10-15 мин.При этом кроме воздуха из установки, удаляется и часть воздуха из бетона, что позволяет получать изделия с более плотной структурой, подача пара с парциальным давлением, позволяет обжать бетон, и также улучшить его прочностные показатели.

Продувка установки выглядит так: после загрузки установку не герметизируют, оставляют открытой дверь или гидравлический затвор,

Начинают подавать пар, который смешивается с воздухом, образуя паро-воздушную смесь. Свежие порции пара постепенно вытесняют ее и температура в определенный момент при атмосферном давлении достигает 100оС.После этого установку полностью герметизируют, подача пара продолжается и достигает заданного значения.

Продувка позволяет увеличить температуру больше чем вакуумирование, т .к. из установки удаляется весь воздух, однако, длится она 1-2 ч при нагреве до 100оС именно тогда когда бетон нуждается в обжатии.

Во время изотермической выдержки, вследствие уравнивания температурного поля и поля влагосодержания, происходит ослабление напряженного состояния при охлаждении из автоклава сбрасывается пар, давление падает температура снижается. Понижение температуры приводит к охлаждению материала, сопровождающегося испарением влаги.

В материале возникают перепады ∆Т и ∆U,а по мере приближения давления к атмосферном возникает ∆Р.Эти градиенты вызывают частные потоки массы, направленные к поверхности аналогичны процессу в камере, где ТВО ведется насыщенным паром.

Таким образом тепло- и массо-обмен,а также возникающие напряженные состояния при обработке паром в автоклаве,близки по физической сущности к процессам проходящим в пропарочной камере при ТВО.

3 Технологический расчет

Продолжительность теплового цикла работы камеры:

τ=τз+ τн+ τи+ τо +τв,ч

Где:

τз, τн, τи, τо ,τв-соответственно время загрузки, нагрева, изотермической выдержки, охлаждения и выгрузки ,ч

τн= (t2-t1)\Vп ,ч

где:

t1- температура цеха;

t2- начальная температура;

Vп—скорость подъема температуры.

t1=16 oC, t2=180 oC ,Vп=25 оС\ч

τн=(180-16)\25=6,56 ч

τо=(t2-t’1)\Vо ,ч

где:

t’1-температура,при которой изделия извлекаются из камеры после ТВО, С

Vо-скорость понижения температуры в камере,

t’1 =40 оС , Vo=30 oC\ч

τо=(180-40)\30=4,67 ч

τ=1+6,56+5+4,67+1=18,23 ч

Суточная производительность тепловых установок:

Vc=Vг\(τг+kρ),м3\сут,

Где:

Vг-годовая производительность завода(цеха),м3\год;

τг—нормированное количество рабочих дней в году;

kρ-коэффициент использования оборудования.

Vг=13560 м3\год , τг=245 , кр =0,91

Vc=13560\(245*0,91)=60,82 м3\сут

Оборачиваемость камер:

m=24\τ

m= 1,37

Количество изделий,изготовленных в сутки:

mиз= Vc\Vи,

Vи-объем одного изделия,м3

Vи-=2,669 м3

mиз=23

Количество изделий,загружаемых в камеру:

nи=H\h

nиз=12 шт

где:

H-ориентировочная высота рабочего пространства пропарочной камеры,м

h-шаг изделия по высоте(сумма высоты формы и расстояния между ними),м

Основные размеры рабочей камеры тепловой установки:

Ширина B=в+2в”+2в’,м В=1,906 м

Длина L=l+2в”+2в’,м L=19,158 м

Высота H=(a+a’) nи +c’(nи -1)+c+d,м Н=3,5 м

Где:

в-ширина изделия,м

в’-расстояние от внутренней стенки камеры до формы,м

в”-ширина полки формы,м

l-длина изделия,м

а-толщина изделия,м

а’-толщина дна формы,м

с-расстояние от дна камеры до низа формы,м

с’-расстояние между формами,м

d-расстояние от крышки камеры до верхней формы,м

Исходя из полученных расчетных данных выбираем автоклав тупикового типа с параметрами:

D=2 м ; Lкорп=19,245 м ;Раб.давление= 0,9 МПа ;Ширина колеи вагонетки= 0,75 м ;Масса= 20,57 т ;Габаритные размеры: L= 20,825 м, В=2 м,Н=4 м.

Объем рабочей камеры установки:

Vк=L*B*H,м3 Vk=127,803 м3

Коэффициент загрузки камеры:

kз=( Vи *nи)\ Vк к=(2,669*12)\127,803=0,25

количество пропарочных камер с учетом резерва:

nk=nиз\(nи*m)+(1…2),шт nk=2

4 Теплотехнический расчет

Уравнение теплового баланса установки имеет вид:

Qист=Qб+Qв+Qф+Qо+Q5+Qп -Qэкз,кДж,

Где:

Qист- количество теплоты,кДж,которое должно быть подведено источником(теплоносителем) к епловой установке,

Qб-теплота на нагрев бетонных и железобетонных изделий в камере,кДж;

Qв-теплота на нагрев воды в бетонной смеси изделий камеры,кДж;

Qф-теплота на нагрев форм,арматуры и других закладных частей из металла,кДж;

Qо-теплота,затрачиваемая на нагрев ограждающих конструкций(стен,крышки,пола),кДж;

Q5-потери теплоты конструкцией тепловой установки в окружающую среду,кДж;

Qп--неучтенные потери теплоты,кДж;

Qэкз-количество теплоты,выделяющейся в процессе экзотермических реакций цемента с водой затворения,кДж.

Qб=Gб*сб (t2-t1),кДж

Qв=Gв*св (t2-t1),кДж

Qф=Gф*сф (t2-t1),кДж

Где:

Gб,Gв,Gф- соответственно полная масса бетонных изделий, воды в бетонной смеси изделий и металла(форма, арматура, закладные детали) в камере, кг;

сб, св, сф- соответственно удельные теплоемкости сухой массы бетона, воды и металла, кДж \(кг К);

t2-максимальная температура в конце стадии нагрева, С

t1-начальная температура С, как правило, принимается равной температуре цеха.

Gб=16727 кг

Gв=4270,4 кг

Gм = 26250,672 кг

Сб=0,837 Св=4,187 См=0,481

Qб=16727*0,837(180-16)=2016071,8 кДж

Qв=4270,4*4,187(180-16)=2574743,73 кДж

Qм=26250,672*0,481(180-16)=1818226,545 кДж

Qо=0,85(t2-tв-35)√с*λ*ρ*τт *F ,кДж

Где:

tв-температура окружающей среды(цеха),С

с, λ, ρ-удельная теплоемкость и плотность материала,из которого выполнено ограждение;

F-площадь ограждения, аккумулирующая теплоту,м2;

τт-продолжительность цикла тепловой обработки,

τт= τн+ τз+ τв,

τт=8,56 ч

F=173,305 м2

Qо=0,85(180-16-35)√0,46*56*7800*8,56 *173,305=24921652,8245 кДж

Q5= Q5’+ Q5”+ Q5’”

Где:

Q5’-потери теплоты в окружающую среду через стены установки, соприкасающейся с воздушной средой цеха, т.е. выступающего над землей, кДж;

Q5”-потери теплоты в окружающую среду через крышку, кДж;

Q5’”-потери теплоты через пол и стены, соприкасающиеся с землей, кДж

Q5’= F*q*τ

Для определения величины теплового потока от стены к воздушной среде цеха q(кДж\ч) необходимо принять в соответствующими с действующими требованиями температуру наружной поверхности вертикальной стенки tнар и подсчитать значение коэффициента теплоотдачиот стенки в окружающую среду α2 :

α2=2,64√ tнар-tв +(си\( tнар-tв)) [((273+ tнар)\100)4 –((273+tв)\1004]=

=2,6 4√20-16 +(4,6\(20-16)) [ ((273+20)\100)4-((273+16)\100)4]=8,21

где:

си-величина, характеризующая излучательную способность стенки;принимается равной 4,6.

В качестве теплоизоляции установки выберем плиты минераловатные с теплопроводностью λиз=0,059 ВТ\(м2 *оС).Зададим толщину теплоизоляции δ=0,22м и найдем величину теплового потока от стены к воздушной среде цеха:

q=[(tср-tв)*3,6]\( δi\λi+1\α2),кДж;