Смекни!
smekni.com

Разработка тепловой установки для тепловлажностной обработки бетона (стр. 3 из 4)

где:

tср- средняя температура внутренней поверхности стенки(ограждения), оС;принимается равной 150 оС

α1-коэффициент теплоотдачи от теплоносителя к внутренней поверхности стенок(ограждений)камеры,Вт\м2К;

q=((150-16)\3,6)\(0,024\56+0,22\0,059+0,003\56+1/8,21)=125,263 кДж\ч

Проверяем значение температуры наружной стенки формулой:

tнар= tср- q\ 3,6*( δиз\λиз+ δст\λст + δс\λс)=150- 125,263\3,6*(0,024\56+0,22\0,059+0,003\56)=20,238 оС

Q5=173,305*125,263*8,56=185826,508 кДж

Неучтенные потери:

Qп=(0,1…0,2)(Qб+Qв+Qф+Qо+Q5),кДж

Qп=0,15*(2016071,8+2574743,73+1818226,545+185826,508)=5402478,211 кДж

Qэкз=qэкз*Gц,кДж

Где:

Gц –масса цемента во всех изделиях, загружаемых в камеру,кг

qэкз-теплота выделяемая при гидратации 1 кг цемента,кДж\кг

tср.б=[0,5(t1+t2)+t2+(t2+t1)0,5]\3=(0,5(180+16)+180+(180+16)*0,5)\3=

=125 оС

qэкз=0,0023 q28*tср.б (В\Ц)0,44τ=0,0023*335*125*(0,4)0,44*6,56=464,385 кДЖ\кг

Gц=Ц*Vи*nиз=450*12*2,669=14412,6 кг

Qэкз=14412,6*464,385=6692005,251 кД

q28-количество теплоты экзотермии при твердении бетона в естественных условиях, кДж\кг(принимается по справочным данным);

τ-продолжительность рассматриваемого периода ТВО для которого определяется Qэкз

Общий расход теплоты за период нагрева:

Qнист=2016071,8+2574743,73+1818226,545+185826,508+5402478,211-6692005,251=34726994,3667 кДж

Расход пара(теплоносителя)в период подъема температуры:

Dн=Qист\[(i-ikн] ,кг\ч

Где:

iи ik–соответственно энтальпии пара подаваемого в камеру ,и конденсата, отводимого из камеры, кДж\кг i=2758 и ik=675,5

Dн=34726994,3667\((2758-675,5)*6,56))=2542,01 кг\ч

В период изотермической выдержки уравнение теплового баланса имеет вид:

Qиист=Q5+Qп+Qвл-Qэкз ,кДж,

Где:

Qвл- расход теплоты на испарение влаги из бетона в период изотермической выдержки,кДж.

Для тяжелого бетона

Qвл=0,015*Gвл*r ,кДж;

r-теплота парообразователя,кДж\кг;

Qвл=0,015*4270,4*2082=133364,592 кДж

qэкз=0,0023 q28*tср.б (В\Ц)0,44τ=0,0023*335*125*(0,4)0,44*5=357,2 кДж\кг

Qэкз=5148457,88

Qиист=185826,508+5402478,211+133364,592-5148457,88= 573211,431 кДж


Расход пара в период изотермической выдержки:

Dи=Qиист\[(i-ikи],кг\ч.

Dи=573211,431 \((2758-675,5)*5)=55,05 кг\ч

Удельный расход теплоты и пара(теплоносителя):

qу=(Qист+Qи ист)\(Vи*nи) кДж,м3 бетона;

qу=(573211,431 +34726994,3667)\(2,669*12)=1102167,0350 кДж\м3 бетона

d= qу\(i-ik),кг пара\м3

d=1102167,0350 \(2758-675,5)=296,4 кг пара\м3

5 Расчет подачи пара(теплоносителя)

Fтр=Dн(и)\(ρ*ω*3600),

Где:

Fтр-площадь поперечного сечения паропроводов,м2

ρ-плотность пара,кг\м3

ω-скорость пара,м\с.

Fтр=2542,01\(3600*25*5,51)=0,00512 м2 или 5,12 см2

D=√(5,12*4)\3,14=2,5 диаметр трубопровода принимает равным 3 см.

Количество отверстий в перфорированных трубах для подачи в камеру необходимого расхода пара:

n=Dн(и)\[0,67d20√(0,02+0,48p1)(p1-p2)*100], шт

где:

p1 и p2 –абсолютное давление пара в перфорированной трубе и камере.

n=2542,01\(0,67*32 √(0,02+0,48*0,15)(0,15-0,1)*100) =196,5=197 шт.

6 Технико-экономические показатели

1.Назначение и тип установки: Автоклав

2.Вид материала: Плиты перекрытия ребристые

3.Производительность установки: 13560 м3\год

4.Суточная производительность установки: 60,82 м3\сут

5.Количество изделий,размещаемых в установке: 12

6.Класс прочности бетона: В 15

7.Время нагрева: 6,56 ч

8.Время охлаждения: 4,67 ч

9.Продолжительность полного цикла работы камеры: 18,23 ч

10.Теплота на нагрев бетонных и железобетонных изделий в камере: 2016071,8 кДж

11.Теплота на нагрев воды в бетонной смеси камеры: 2574743,73 кДж

12.Теплота на нагрев металла в камере: 1818226,545 кДж

13.Потери теплоты через стены установки: 185826,508 кДж

14.Неучтенные потери теплоты: 5402478,211 кДж

15.Расход пара в период подъема температуры: 2542,01 кг\ч

16.Расход пара в период изотермической выдержки: 93,18 кг\ч

17.Удельный расход теплоты и пара за весь цикл тепловой обработки: 369643,75 кДж\м3 бетона

18.Площадь поперечного сечения паропроводов: 5,12 см2

19.Диаметр паропровода: 2,5 см

20.Количество отверстий в перфорированных паропроводах,для подачи необходимого количества пара в установку: 197 шт.


7 Автоматизация тепловой обработки изделий

Эффективность управления производством в современных условиях в значительной мере определяется наличием методов и технических средств управления качеством продукции на всех стадиях технологического процесса. Задачи управления качеством продукции, оптимизации технологических процессов решаются на базе комплексной автоматизации производства, широкого внедрения систем и средств автоматизации. Одним из основных условий успешного решения задач автоматизации производства является обеспечение систем автоматического управления технологическими средствами оперативного автоматического контроля параметров-характеристик автоматизированных технологических процессов − физических, химических и других величин, информация о которых необходима для обеспечения оптимального управления тем или иным процессом. Степень обеспеченности технологического процесса такими средствами наряду с уровнем механизации автоматизированного производства (процесса, передела) и достигаемые технико-экономические эффекты являются определяющими, а зачастую, и лимитирующими при оценке возможности и целесообразности организации автоматизированного управления, создания конкретных систем автоматизации в производстве сборного железобетона.

Автоматизация технологического процесса производства железобетона требует использования автоматизированных средств для контроля основных возмущающих воздействий и качественных характеристик железобетонных изделий, информация от которых может использоваться в целях оптимального управления производством.

Тепловая обработка, обеспечивает ускоренное твердение отформованных бетонных изделий в специальных теплоагрегатах. Основная цель автоматического контроля и управления этим процессом заключается в соблюдении заданных режимов твердения бетона при минимальном расходе энергоресурсов.

Эффективность автоматизации тепловой обработки во многом определяется выбором регулируемого параметра, характеризующего ход процесса ускоренного твердения бетона.

Большинство существующих систем автоматического контроля и управления процессами тепловой обработки железобетонных изделий предназначено для регулирования процесса твердения (а также его контроля) по температуре теплоносителя (в объеме тепловой установки — камера-автоклав) или конденсата, отводящегося из отсеков термоформ, кассет или других установок, где прогрев бетона осуществляется без непосредственного контакта теплоносителя с бетоном.

Системы автоматического управления процессом в автоклавах обеспечивает программное регулирование процесса по давлению или температуре,измерения и запись контролируемых параметров,блокировку подачи теплоносителя в зависимотси от состояния крышек автоклава ,повторное использование отработанного пара ,светозвуковую технологическую и аварийную сигнализацию. Программное регулирование теплового процесса по давлению основано на преобразовании показателей манометра в электрический сигнал постоянного тока, который подается на вход регулятора .После загрузки автоклава, закрытия крышек, срабатывают блокировочные устройства и начинается процесс запарки .Если давление линии перепускного пара больше чем в автоклава, то пар поступает из этой линии до тех пор, пока разница давлений не достигнет 0,18-0,2 МПа.При такой разнице переключатся исполнительные механизмы, управляемые регулятором на подачу теплоносителем из линии острого пара. Пар, выпущенный из автоклава, поступает в перепускную линию до достижения указанной разницы давлений после чего пар выпускается в атмосферу. Светозвуковая технологическая и аварийная сигнализация отражает положение регулирующих и запарных органов, крышек автоклавов, недопустимое отклонение регулируемого параметра от заданного.

Основным параметром для системы автоматического регулирования процесса тепловой обработки в автоклавах должна быть температура, автоматически поддерживаемая согласно заданной программе:

Рис.3 Схема пароснабжения двух автоклавов паровым аккумулятором

На Рис.3 показана схема пароснабжение с паровым аккумулятором, где по системе 1 подается рабочий пар из системы пароснабжения предприятия. Эта система имеет подводы к каждому автоклаву, которые на рисунке обозначены соответственно I и II.Системы 3 предусматривает удаление конденсата из каждого автоклава через конденсаторноотделительное устройство 4 в конденсационную сеть. Система 2 служит для присоединения автоклавов к вакуум-насосу. Система 5 предназначена для отбора пара из автоклавов и передачи его либо в паровой аккумулятор, либо на перепуск в другой автоклав, либо для выброса отработанного пара в атмосферу через трубопровод 7. Система 6 служит для перепуска пара в автоклавы .Назначение системы 8-передавать пар в емкость-аккумулятор III или для отбора из аккумулятора. Все системы снабжены вентилями 10.

Пусть в первом автоклаве закончился период изотермической выдержки, который проводится при Р=1 МПа, второй автоклав только загружен и нуждается в подаче пара, рабочая емкость- паровой аккумулятор заполнен горячей водой при давлении 0,1 МПа, автоклавы предназначены для вакуумирования без продувки. Так как автоклав II нуждается в паре, а из автоклава Iнужно отбирать пар, то из одного в другой пара перепускают.