Смекни!
smekni.com

Разработка технологии сварки корпуса водила II ступени (стр. 2 из 8)

Технологический диапазон для целей нагрева, плавления, испарения составляет 104-5·108 Вт/см2. Сварка металлов малых толщин (до 3-х мм) ведется с удельной мощностью 104 Вт/см2, когда испарение с поверхности сварочной ванны незначительно. Однопроходная сварка металлов больших толщин (до 200–300 мм) требует удельной мощности 105-106 Вт/см2. В этом случае проникновение электронного луча на большую глубину сопровождается испарением металла и формированием канала проплавления, на стенках которого рассеивается практически вся мощность электронного луча. Канал проплавления, поверхность которого сильно перегрета, относительно температуры плавления металла и может достигать температуры кипения, движется через толщу металла, образуя по всей глубине канала область расплава металла, которая перемещается в хвостовую часть ванны и там кристаллизуется.

Высокая концентрация энергии в луче позволяет получать при больших скоростях ЭЛС узкие и глубокие сварные швы с минимальной зоной термического влияния и высокими механическими свойствами металла шва и околошовной зоны.

Эффективный КПД ηи изменяется в пределах от 70 до 90% и практически не зависит от энергии первичных электронов; он зависит только от атомного номера обрабатываемого материала; для Ti, например, он равен 0,842.

Как правило, при ЭЛС не нужны присадочные материалы, разделки кромок, а следовательно уменьшается перевод металла в стружку и затраты на механическую обработку. Повышаются качество и механические свойства металла шва за счет дегазации в вакууме и мелкозернистой структуры в металле шва и зоне термического влияния, которая примерно в несколько раз уже, чем при дуговых способах сварки.

Высокая концентрация энергии в луче обеспечивает получение швов не только с минимальной зоной расплавления металла, но и соединений, металл которых в околошовной зоне не претерпевает значительных изменений вследствие ввода минимального количества тепла и значительных скоростей охлаждения. Отсутствие значительной протяженности зоны термического влияния исключает недостатки, возникающие при эксплуатации конструкций, вызванные изменением физико-механических свойств металла в околошовной зоне.

При сварке электронным лучом проплавление имеет форму конуса (рис. 1.). Плавление металла происходит на передней стенке кратера, а расплавляемый металл перемещается по боковым стенкам к задней стенке, где он и кристаллизуется.

Рис. 1. Схема переноса жидкого металла при электронно-лучевой сварке: 1-электронный луч; 2 – передняя стенка кратера; 3 – зона кристаллизации; 4 – путь движения жидкого металла

Глубокое проплавление металла при малой погонной энергии, имеющее место при сварке электронным лучом, обуславливает значительно большую скорость отвода тепла от зоны сварки, что обеспечивает увеличение скорости кристаллизации малой по объему сварочной ванны с получением мелкозернистого строения металла шва, по своим свойствам мало отличающегося от основного металла. Ввод значительно меньшего количества тепла, имеющего место при ЭЛС, дает возможность во много раз уменьшить деформации изделий по сравнению с дуговым способом сварки.

Электронный луч является легко управляемым источником тепла при сварке, что позволяет в широких пределах и очень точно регулировать температуру нагрева изделия, легко перемещать зону нагрева по изделию и переносить энергию на значительные расстояния.

Установлено, что при использовании вакуума в качестве защитной среды при сварке имеется принципиальная возможность уменьшить содержание газов в некоторых металлах за счет процессов дислокации окислов, нитридов и гибридов. Наиболее легко из металлов удаляется водород, даже в том случае, если он находится в связанном состоянии. Большинство соединений металла с водородом уже при относительно низких температурах нагрева разлагается. Таким образом, в условиях сварки в вакууме большая часть водорода, содержащегося в металле, может быть удалена из металла.

Резко уменьшаются сварочные деформации и напряжения первого рода, что зачастую позволяет изготавливать изделия без правки и дополнительной механической обработки. Появляется возможность местной термической обработки, в том числе и сварных соединений, одновременно со сваркой.

В последнее время в связи с созданием мощных установок для электронно-лучевой сварки расширяется применение сварки электронным лучом для соединения элементов из титановых сплавов толщиной до 300 мм. Сварка толстостенных конструкций электронным лучом является наиболее экономичной по сравнению с любым видом сварки. Скорость сварки электронным лучом для толщин более 100 мм составляет 2, 5–5, 0 м/ч, что превосходит скорость сварки при электрошлаковом процессе более, чем в 5 раз и в 10–15 раз при автоматической многослойной сварке под флюсом. Особенно эффективно применение электронного луча для сварки толстостенных конструкций из титановых сплавов из-за низкой теплопроводности титана, благодаря чему удается получать узкие швы при больших толщинах свариваемых деталей, кроме того, очень благоприятно для титана отсутствие вредных газов при сварке в вакууме.

Исследования ученых показали, что при электронно-лучевой сварке титанового сплава ПТ-3В толщиной до 200 мм структура шва мелкозернистая, зона термического влияния узкая (1–2,5 мм), а статические характеристики при растяжении сварного соединения не ниже соответствующих характеристик основного материала. Соединения, полученные сваркой высококонцентрированными источниками энергии, разрушаются по основному металлу. В псевдо-α-сплавах остаточные напряжения наиболее высоки. Научные исследования также показали, что при ЭЛС образуются соединения с более высоким пределом выносливости, чем при аргонодуговой сварке. При немногочисленных усталостных испытаниях сварных соединений, выполненных электронно-лучевой сваркой, разрушение сварных соединений по основному металлу объясняются высокими напряжениями или перераспределением водорода при сварке, вызывающем охрупчивание металла в зоне разрушения.

2.3 Описание электронно-лучевой сварки. Общая характеристика

Электронный луч как технологический инструмент позволяет осуществлять нагрев, плавку и испарение практически всех материалов, сварку и размерную обработку, нанесение покрытий.

Формирование электронного луча и управление им осуществляется рядом специальных устройств, называемых 2 электронными пушками».

Источником электронов в электронных пушках обычно служит термоэмиссионный катод 1, который выполняется из вольфрама, тантала или гексаборида лантана, обладающих высокими эмиссионными характеристиками. В зависимости от материала катода его рабочая температура может достигать 2400–2800 К. Подогрев катода чаще всего осуществляется при помощи накаливаемого электрическим током элемента, причем в некоторых случаях сам этот элемент может выполнять функции катода (катод прямого накала).

На некотором расстоянии от катода находится анод 2, выполненный в виде массивной детали с отверстием по оси. Между катодом и анодом от специального высоковольтного источника питания 3 прикладывается ускоряющее напряжение (30–150 кВ), причем анод обычно соединяется с корпусом установки, а катодный узел крепится на высоковольтном изоляторе. Вследствие разности потенциалов между катодом и анодом электроны ускоряются до значительных скоростей, большая часть их походит через отверстие в аноде и затем продолжает в заанодном пространстве движение по инерции. Этот движущийся электронный поток обладает еще сравнительно невысокими удельными энергетическими показателями и для формирования из него электронного луча с необходимыми характеристиками обычно требуется дополнительная операция – фокусирование луча.

Следует отметить, что в рабочем пространстве электронной пушки необходим вакуум, так как при большом количестве молекул остаточных газов они препятствуют свободному прохождению электронов из-за их взаимных столкновений. Кроме того, условия работы подогревного катода также требуют защиты его от взаимодействия с атмосферными газами. Рабочий вакуум в электронной пушке должен быть не хуже 1·10-3 – 1·10-4 Па. При уменьшении вакуума происходит пробой между катодом и анодом электронной пушки, что может привести к выходу из строя высоковольтного выпрямителя.

Для фокусирования электронного луча в электронной пушке обычно используется система диафрагм и магнитных линз. Магнитная линза 4 представляет собой соленоид с магнитопроводом, создающий специальной формы магнитное поле, которое при взаимодействии с электроном изменяет его траекторию и искривляет ее в направлении к оси системы. При этом можно добиться «сходимости» электронов на достаточно малой площади поверхности и в фокусе электронный луч может обладать весьма высокой плотностью энергии, достигающей 5·106 Вт/мм2. Такая плотность энергии достаточна для осуществления целого ряда технологических процессов, причем в результате изменения фокусировки она может быть плавно изменена до минимальных значений.

В конструкцию электронной пушки обычно входит также «отклоняющая система» 5, служащая для перемещения электронного луча по обрабатываемой поверхности. Перемещение луча осуществляется вследствие его взаимодействия с поперечным магнитным полем, создаваемым отклоняющей системой. Обычно для этой цели электронная пушка имеет две пары отклоняющих катушек, обеспечивающих перемещение луча по двум взаимно перпендикулярным направлениям. При питании отклоняющих катушек током определенной частоты и амплитуды можно получить практически любую траекторию перемещения электронного луча по обрабатываемой поверхности, что широко используется в электронно-лучевой технологии.