Смекни!
smekni.com

Разработка технологии сварки корпуса водила II ступени (стр. 7 из 8)

Используемые в производстве приборы (амперметры, вольтметры и т.д.), установленные на сварочных машинах или рабочих местах, инструмент периодически подвергаются метрологическому надзору и при необходимости ремонту. Контролю подвергаются также электрическая аппаратура и механизмы передвижения и др.

В значительной мере качество сварного соединения зависит от качества используемой специальной оснастки и приспособлений. Сборочные приспособления должны обеспечивать требуемую прочность и жесткость, точное, быстрое и надежное закрепление элементов сварной конструкции, необходимую степень точности всех размеров свариваемой детали, узла, изделия; установку свариваемого объекта в положение, удобное для сварки, и д.р.

Эти требования должны быть отражены в технических условиях – на проектирование и изготовление приспособлений.

В процессе производства состояние приспособлений контролируют систематически и в сроки, установленные в зависимости от характера производства и выпускаемой продукции.

Контроль технологии.

Большое значение для обеспечения качества выпускаемой продукции имеет контроль в процессе производства. Внимательное и непрерывное наблюдение за состоянием оборудования, аппаратуры, приспособлений, приборов и инструментов, а также за ходом выполнения сварочных операций каждым сварщиком позволяет своевременно обнаружить дефекты сварки и принять меры по устранению причин их образования. Контроль технологии изготовления сварных изделий включает проверку подготовленных к сварке заготовок, исправности сварочных приспособлений, сборки изделий под сварку, состояния сварочных материалов, сварочного оборудования и соблюдения установленных режимов сварки. У подготовленных к сварке заготовок проверяют форму, размеры и геометрию разделки кромок, а также отсутствие на их поверхностях загрязнений, ржавчины, влаги.

У сварочных приспособлений контролируют исправность зажимных устройств, пригодность установочных поверхностей, а также флюсовых, медных и угольных подкладок и теплоотводящих элементов. Режимы сварки контролируют в первую очередь по току, напряжению и скорости в установленных пределах. Контроль ведут визуально по приборам и по внешнему виду сварного шва. При изготовлении ответственных конструкций и присерийном производстве ведут непрерывную запись параметров режима с помощью самопишущих приборов.

Контроль заготовки и сборки.

Внешнему осмотру подвергают свариваемые материалы для выявления вмятин, заусенцев, окалины, ржавчины, окислов и т.д.

Проверяют качество подготовки кромок под сварку и сборку заготовок. К основным контролируемым размерам собранных под сварку деталей относят зазор между кромками и притупление кромок – для стыковых соединений без разделки кромок, притупление кромок и угол их разделки – для соединений с разделкой кромок. Для измерения и проверки, указанных выше параметров применяют специальные шаблоны или универсальный инструмент. Детали, узлы или изделия, собранные под сварку с отклонением от технических условий или установленного технологического процесса, бракуют. Средства, порядок методы контроля предусматриваются технологическим процессом производства.

Контроль внешним осмотром

Внешним осмотром невооруженным глазом или с помощью лупы выявляют прежде всего дефекты швов в виде трещин, подрезов, свищей, прожогов, наплывов, непроваров в нижней части швов. Многие из этих дефектов, как правило, недопустимы и подлежат исправлению. При осмотре выявляют дефекты формы швов, распределение чешуек и общий характер распределения металла в усилении шва.

Сварные швы часто сравнивают по внешнему виду со специальными эталонами. Геометрические параметры швов измеряют с помощью шаблонов и измерительных инструментов.

Только после внешнего осмотра изделие подвергают каким-либо физическим методам контроля для определения внутренних дефектов. Тщательный внешний осмотр – обычно весьма простая операция – может, тем не менее, служить высокоэффективным средством предупреждения и обнаружения дефектов.

Цветная капиллярная дефектоскопия

Капиллярный метод контроля проникающими веществами позволяет выявлять внутренние дефекты, выходящие на поверхность. Он заключается в том, что на поверхность изделия наносят индикаторную жидкость – пенетрант, который имеет характерный цветовой фон.

После очистки поверхности от пенетранта наносят проявитель, который вытягивает его из полости дефекта. На поверхности изделия появляется рисунок шириной 0,05–0,3 мм, который виден невооруженным глазом или при помощи лупы с небольшим увеличением.

Для контроля используем цветную дефектоскопию, при которой проникающая жидкость (пенетрант) образует на белом фоне проявителя красный индикаторный рисунок. Красный цвет вследствие особенностей восприятия глазом человека обеспечивает большую вероятность обнаружения индикаторных рисунков, имеет высокую контрастность и легко позволяет отличить микротрещины от рисок и заусенец.

Перед капиллярным контролем необходимо удалить с поверхности изделия лакокрасочные, силикатные и др. покрытия, так как их дефекты могут нести ложную информацию о дефектах сварного соединения. Также обязательно удаляются окисные пленки и жидкие загрязнения, которые заполняют полость дефекта и оказывают разбавляющее действие на индикаторную жидкость, что может изменить и ее свойства. Значение размеров выявляемых дефектов зависят от класса чувствительности и приведены в таблице 4.

Таблица 5

Класс чувствительности Ширина, мкм Глубина, мкм Протяженность, мм
II до 10 до 100 до 1

Технология капиллярной дефектоскопии.

1. Подготовка детали к контролю.

Сводится к промывке детали. Промывку осуществляют водой. Водой удаляют остатки моющих водных средств, механические нерастворимые загрязнения.

Деталь промывают по несколько раз горячей и холодной водой, затем ее высушивают.

2. Заполнение полости дефектов пенетрантом.

Осуществляют капиллярным способом. Пенетрант наносят на контролируемую поверхность и выдерживают в течение определенного времени. Время проникновения зависит от характера дефекта (сквозной или тупиковый).

Для ускорения процесса пропитки деталь могут подогревать При подогреве уменьшается вязкость и поверхностное натяжение жидкости, улучшается смачиваемость.

3. Удаление пенетранта с поверхности изделия.

Осуществляется промывкой водой или очищающей жидкостью и последующей протиркой или сушкой.

4. Нанесение проявителя.

Оптимальная толщина слоя проявителя составляет 1 – 15 мм.

Используем механическое распыление проявителя, которое производится струей воздуха или инертного газа. Этот метод обеспечивает высокую чувствительность за счет равномерного слоя проявителя, но связан с большими потерями проявителя до 30–40%.

5. Проявление дефектов.

Осуществляется самым рациональным – тепловым методом. Изделие обдувают струей теплого воздуха с температурой 70–800С.

6. Осмотр изделия и анализ индикаторных следов дефектов.

Осмотр изделия производят в 3 этапа:

1) Визуальный осмотр изделия для оценки качества нанесения проявителя;

2) Общий осмотр поверхности изделия для обнаружения рисунка дефекта;

3) Анализ индикаторных рисунков выявляемых дефектов.

Убедившись, что проявитель нанесен качественно, производят общий осмотр поверхности изделия невооруженным глазом или с помощью лупы двукратного увеличения. Эта операция выполняется через 3–5 мин после нанесения проявителя, а через 20–25 мин проявляются следы мелких дефектов и ведется анализ индикаторных рисунков в полной мере.

Полный осмотр предполагает изучение месторасположения рисунка, цвет, яркость, направление рисунка. Необходимо отличать истинные дефекты от ложных.

7. Удаление дефектоскопических материалов.

Осуществляется протиркой ветошью с применением воды.

Пенетрант: керосин – 80%, масло трансформаторное – 15%, скипидар – 5%, краситель 5С – 10г/л.

Очищающая жидкость: ОЖ-3.

Проявитель: каолин 600–700 г. на 1 л воды.

Метод проявления – суспензионный.

Класс чувствительности – II.

Ультразвуковая дефектоскопия

Ультразвуковой контроль основан на исследовании процесса распространения упругих колебаний с частотой 0,5–25 МГц в контролируемом изделии.

Для УЗК используем импульсный эхо-метод с использованием дефектоскопа УД2–12. Метод основан на регистрации эхо-сигнала от дефекта. На экране индикатора виден посланный зондирующий импульс I, отраженный от противоположной поверхности донный сигнал III, эхо-сигнал от дефекта II.

Время прихода сигнала II и III пропорционально глубине залегания дефекта и толщине контролируемого изделия. Для контроля используем наклонный (призматический) пьезопреобразователь.

Преимущества метода:

1. Высокая чувствительность;

2. Односторонний доступ к изделию;

3. Незначительная площадь механического контакта.

Недостатки метода:

1. Низкая помехоустойчивость к наружным отражателям

2. Резкое изменение амплитуды сигнала от ориентации дефекта;

Предельная чувствительность метода 0,1 мм2 для плоских дефектов и 0,9 мм2 для объемных дефектов. Применяют при контроле изделий толщиной от 4 до 2000 мм.

Поиск дефектов производится путем поперечно-продольного сканирования всей поверхности контролируемой зоны. В процессе перемещения пьезопреобразователь необходимо поворачивать вокруг своей оси на 10–150, чтобы обнаружить различно ориентированные дефекты. Акустический контакт обеспечивается легким нажатием руки на пьезопреобразователь с усилием Р=15 Н.