Смекни!
smekni.com

Разработка технологии электротермического получения силикоалюминия с использованием малозольных восстановителей (стр. 2 из 4)

В третьем разделе приведены результаты лабораторных исследований по изучению механизма и кинетики процесса восстановления алюмосиликатных шихт в широком диапазоне составов силикоалюминия с использованием различного сырья и восстановителя, выдержки шихты при низких и высоких температурах. Также представлены результаты исследований влияния на процесс содержания летучих компонентов восстановителей, в т.ч. пироуглерода, взаимосвязи составов сырья и восстановителя, сульфатных добавок.

В четвертом разделе представлены результаты плавок шихт с повышенным содержанием нефтекокса и КНТК на однофазной двухэлектродной печи.

В пятом разделе приведены результаты анализа многолетних данных производства силикоалюминия на трехфазной печи при использовании шихт с различным составом восстановителя.

ОСНОВНЫЕ ЗАЩИЩАЕМЫЕ ПОЛОЖЕНИЯ

Степень восстановления алюмосиликатов углеродом обусловлена соотношением Al:Si в шихте, продолжительностью пребывания шихты в зонах низких и высоких температур, составом минерального сырья и восстановителя, летучие компоненты которого не участвуют в восстановлении, а образуемый пироуглерод повышает скорость протекания процесса.

■ В опытах на печи Таммана (рис. 1) с использованием в шихтах различного минерального сырья (кривые 1-3, 5) и технического карбида кремния (кривая 4) при одинаковом составе углеродистого восстановителя: газового угля и нефтяного кокса в соотношении 70:30 по Снлт. (дозировка 95% от стехиометрии) установлено:

▪ Извлечение кремния из сырья в диапазоне составов си

ликоалюминия с расчетным содержанием Si ~34-60% имеет достаточно близкие значения и практически не зависит от формы используемого углерода в шихте: в виде SiC или свободного углерода шихты.
Восстановление оксида кремния протекает по реакции (1).

SiO2 + 3С = SiC + 2СО (1)

▪ Для шихт с соотношением Al:Si = 2:3 (~60% кремния в силикоалюминии) извлечение алюминия так же, как и кремния, не зависит от формы углерода в шихте: SiC или Ссвоб. шихты. Оксид алюминия восстанавливается по суммарной реакции (2).

Аl2O3 + 3SiC = 2Al + 3Si + 3СО (2)

При соотношении в шихтах Al:Si > 2:3 свободный углерод, оставшийся после завершения стадии образования SiC, может образовывать с Аl2O3 оксикарбидные "комплексы" (моно и -тетра оксикарбиды алюминия Al2OC и Al4O4C) по реакциям (3 и 4).

Al2O3 + 3C = Al2OC + 2CO (3)

Al2OC + Al2O3 = Al4O4C (4)

Эти "комплексы" плавятся при более низких температурах (1840-1950°С) по сравнению с Аl2O3 (~2050°С) с соответствующим понижением реакционной способности углерода, перешедшего из шихты в оксикарбидный расплав. Этим объясняется наклон кривой 4 на рис. 1. В опытах с алюмосиликатными шихтами(кривые 1-3) степень образования этих "комплексов" уменьшалась из-за блокировки поверхности Ссвоб. шихты образующимися по реакции (1) частицами SiC.

■ Исследованиями на печи Таммана (таблица 1) шихты промышленного состава, включающей каолин и ДСК в соотношении по массе 65:35, глинозем и восстановитель: газовый уголь и нефтяной кокс в соотношении 70:30 по нелетучему углероду при дозировке Снлт. 95% от стехиометрии (расчетное содержание Al в силикоалюминии 63% масс.) установлено:

▪ С увеличением времени выдержки шихты при 1600°С восстановимость шихты уменьшается, что объясняется возрастанием степени образования SiC по реакции (1). Оставшийся Ссвоб. шихты взаимодействует с Аl2O3 с образованием оксикарбидных "ком-плексов" алюминия, составляющих жидкую фазу шлаков. Основным поставщиком этой фазы в руднотермических печах являются участки с низкими температурами (межэлектродные или межтигельные зоны), что подтверждается практикой работы этих печей. Количество шлаков при выплавке силикоалюминия на однофазной одноэлектродной и двухэлектродной печах, а также трехфазной трехэлектродной печи по числу этих зон на 1 электрод составляет, соответственно, ~8-10, 17-20 и 25-30%.

▪ В случае "передержки" шихты при 2000оС восстановимость снижается из-за взаимодействия восстановленного металла с углеродом тигля (в плавке на печах с углеродом подины или электрода).

■ Исследованиями свойств (рис. 2, а, б, в, г) шихт с использованием каолина и глинозема и смеси предварительно прокаленного газового угля и нефтяного кокса в соотношении 70:30 по Снлт с дозировкой 95% масс. против стехиометрии с расчетным содержа-

Рис. 2 – Изменение от температуры прокалки: состава газового

угля (а, 1–зола, 2 –летучие компоненты, 3 –нелетучий углерод),

УЭС угля (б) и шихты (в), восстановимости шихты (г)

нием 60% Alв силикоалюминии определено:

Летучий углерод практически не участвует в восстановлении оксидов алюминия и кремния. Показатели восстановимости и УЭС шихты близки к максимальным значениям при содержании летучих компонентов в угле всего лишь ~1% (рис. 2, а, в, г). Такое содержание летучих компонентов получено в газовом угле, прокаленном при ~1000оС, т.е. до начала протекания восстановительных реакций.

▪ Содержание золы (рис. 2, а) в прокаленных углях растет с

увеличением температуры прокалки до 1000-1300°С, а при дальнейшем повышении температуры несколько уменьшается, что можно объяснить началом восстановления оксидов собственной золы.

▪ Снижение восстановимости и УЭС шихты (рис. 2, в, г) с повышением температуры прокалки углей выше 1000°С происходит в результате упорядочения структуры углерода и понижения его химической активности (рис. 2, б) при графитизации.

■ Исследованиями на лабораторной печи со сбором отходящего газа (рис. 3 и 4) шихт из каолина и ДСК в массовом соотношении 65:35, глинозема, а также непрокаленного и предварительно прокаленного в течение 2-х часов при температурах 800 и 1200°С без доступа воздуха восстановителя, включающего газовый уголь и нефтяной кокс при различном соотношении по Снлт. при дозировке 95% против стехиометрии с расчетным содержанием Al 63% масс показано:

▪ Скорость восстановления алюмосиликатов в стационарном режиме (горизонтальные площадки) в шихтах с использованием непрокаленного восстановителя значительно выше, чем с прокаленным восстановителем (рис. 3), что обусловлено влиянием образующегося на поверхности минералов пироуглерода.

▪ Слой пироуглерода, образованный на частицах крупно-зернистого (фр. –0,5 +0,1 мм) ДСК, плотно связан с кристаллической решеткой оксидов и, по-видимому, деформирует ее пограничный слой, активизируя его. Этим можно объяснить большую скорость восстановления газовым углем. Однако максимальное содержание углерода, осевшего на поверхности частиц ДСК, при пиролизе летучих компонентов одного угля по отношению к минеральной части не превышает 1,4 % масс (рис. 4). Следовательно, пироуглерод оказывает влияние лишь на кинетику процесса, повышая скорость протекания восстановительных реакций.

При 800оС пиролиз летучих компонентов восстановителей еще не заканчивается, и продолжается при 1200оС. Полученные данные удовлетворительно согласуются с результатами опытов с прокалкой газового угля при температурах 500-1000оС (см. рис. 2, а).

▪ По экспериментальным данным определена постоянная величина энергии активации процесса восстановления шихт с различным составом непрокаленного восстановителя, составляющая 3,33 ·102 кДж/моль, что свидетельствует о протекании восстановления алюмосиликатов в кинетической области.

■ В опытах (рис. 5) на печи Таммана с шихтами (1-3) с использованием различного минерального состава и восстановителя при дозировке Снлт. 95% против стехиометрии, рассчитанных на получение силикоалюминия с содержанием 63% Al установлено:

▪ По мере увеличения содержания нефтяного кокса в смеси восстановителей восстановимость шихты уменьшается. Однако в зависимости от минерального состава сырья полученные кривые носят различный характер, что связано с образованной при муллитизации (1300-1400оС) легкоплавкой смеси муллита с кристобалитом, количество которой у каолина при нагреве до 1600-1800оС в ~4 раза выше, чем у ДСК (реакции 5 и 6).

Al2O3·2SiO2 → 1/3(3Al2O3·2SiO2) + 4/3SiO2 (5)

Al2O3·SiO2 → 1/3(3Al2O3·2SiO2) + 1/3SiO2 (6)

По возрастанию массовой доли этой фазы, шихты располагаются в следующий ряд: песчано-глиноземные–с каолином и ДСК– каолин-глиноземные.

■ Исследованиями на печи Таммана шихт с добавками сульфатов аммония, алюминия и кальция из каолина и ДСК в соотношении по массе 65:35, глинозема, газового угля и нефтяного кокса в соотношении по Снлт. 70:30 с дозировкой 95%, рассчитанных на 63% Al установлено: