▪ По активирующему влиянию на восстановление алюмосиликатов сульфаты располагаются в следующем порядке по убыванию: (NH4)2SO4, Al2SO4 и CaSO4. Восстановимость шихты повысилась, соответственно, на ~31, 20 и 16%;
▪ Добавка сульфатов аммония и алюминия обеспечивает высокую реакционную поверхность восстановителя брикетов за счет низких температур разложения (>218-350оC) при диссоциации. При этом повышается глубина взаимодействия субоксидов Al2Oг и SiOг с углеродом шихты, что способствует более полному восстановлению сырья;
▪ Сульфат кальция в присутствии углерода восстанавливается при температурах 800-900оС по реакции (7):
CaSO4 + 2C = CaS + 2CO2 (7),
что приводит к увеличению пористости брикетов за счет уменьшения объема и улучшению контакта образующихся A2O и SiO с углеродом шихты.
■ Исследованиями шихт (таблица 2) с использованием в качестве восстановителя кокса низкотемпературного термоконтактного крекинга (Собщ -91,8; Снлт. -87,2; % масс: SiO2 -0,16; Аl2О3 -0,04; Fe2O3 -0,19; TiO2 -0,01; P205 -0,02; CaO -0,07; MgO -0,01; S -6,0; Na20 -0,07; V2O5 -1,17; NiO -0,44), рассчитанных на получение силикоалюминия с 63% Al, при дозировке Cнлт. в шихте 95% определено:
▪ Наиболее высокими прочностными свойствами брикетов за счет уменьшения объема восстановителя обладают шихты с использованием КНТК и нефтяного кокса.
Показатели УЭС и восстановимости шихт, наоборот, выше
Показатели | "Базо- вая" | №№ опытных шихт с КНТК | ||||
1 | 2 | 3 | 4 | 5 | ||
1. Состав, % масс: | ||||||
- каолин | 34,7 | 34,7 | 35,5 | 37,6 | 37,6 | 37,6 |
- глинозем | 14,2 | 14,2 | 14,5 | 15,3 | 15,3 | 15,3 |
- ДСК | 18,7 | 18,7 | 19,1 | 20,2 | 20,2 | 20,2 |
- КНТК | - | 7,5 | 12,7 | 8,1 | 13,45 | 26,9 |
-газовый уголь | 24,9 | 24,9 | 18,2 | - | - | - |
- нефтяной кокс | 7,5 | - | - | 18,8 | 13,45 | - |
Итого: | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 |
2. Распределение Снлт. | ||||||
- КНТК | 30,0 | 50,0 | 30,0 | 50,0 | 100,0 | |
-газовый уголь | 70,0 | 70,0 | 50,0 | - | - | - |
-нефтяной кокс | 30,0 | - | - | 70,0 | 50,0 | - |
3. Мех. прочность брикетов, мПа: | ||||||
- высушенных, 105оС | 8,17 | 8,29 | 8,55 | 8,60 | 10,20 | 10,36 |
- прокаленных., 1000оС | 1,58 | 1,62 | 1,98 | 1,95 | 2,36 | 2,39 |
4. УЭС, Ом∙м | 0,145 | 0,193 | 0,247 | 0,185 | 0,222 | 0,380 |
5. Восстановим-ть, % | 46,18 | 47,73 | 49,68 | 46,90 | 48,52 | 52,18 |
при использовании смеси КНТК с газовым углем, что объясняется большими значениями указанных характеристик для угля.
▪ Лучшие показатели получены для шихты с использованием в качестве восстановителя одного КНТК (шихта 5): прочность высушенных и прокаленных брикетов повысилась соответственно на 26,8 и 51,3%, УЭС увеличилось в 2,6 раза, восстановимость возросла на 13%.
Высокая активность КНТК обусловлена низкими температурами коксования, а также увеличением реакционной поверхности за счет отгонки серы при нагреве шихты.
Улучшение показателей плавки алюмосиликатов достигается на открытой и герметизированной печи за счет использования в составе восстановителя кокса низкотемпературного термоконтактного крекинга и повышенного содержания нефтяного кокса с введением в состав брикетов активирующих добавок сульфатов аммония и алюминия, а также применением "рыхлителей" шихты – гранул лигнина и древесной щепы.
■ В опытно-заводских плавках на однофазной двухэлектродной печи (рис. 6) шихт с сульфатами (NH4)2SO4 и Al2(SO4)3 в количе
стве 2% масс, приготовленных на основе "базовой" шихты (без добавки сульфата), % масс: каолин – 35,3; ДСК – 19,0; глинозем – 14,4; уголь газовый – 15,3 и нефтяной кокс – 16,0 при соотношении газового угля и нефтяного кокса в брикетах 40:60 по Cнлт и общей дозировке 100% против стехиометрии (распад электродов 550-560 мм, средняя мощность печи ~124 кВт) установлено:▪ Увеличение производительности печи по рафинированному сплаву, соответственно, на ~12 и 8%;
▪ Снижение удельного расхода электроэнергии на ~12 и 8%.
■ Плавками шихт с соотношением каолина и ДСК 62:38 масс. и глиноземом с повышенным содержанием нефтяного кокса (40 и 80% по Cнлт. в смеси с газовым углем) с "рыхлителями": гранулами лигнина (дозировка углерода в брикетах и в виде "рыхлителя" по Cнлт. составила ~88:9) и древесной щепой (~84:13%) по сравнению с "базовой" шихтой (без "рыхлителей") с соотношением угля и кокса по Снлт 70:30 (распад электродов 490-500 мм, мощность 117-132 кВт) установлено:
▪ Добавка "рыхлителей" позволяет снизить "спекание" колошника и улучшить сход брикетов в печи;
▪ Производительность печи при плавках шихт, содержащих 40 и 80% нефтекокса в составе восстановителя в брикетах, с использованием гранул лигнина повысилась на ~15 и 29%, а удельный расход электроэнергии и минеральной части шихты снизился, соответственно, на ~14 и 18% и ~21 и 29%.
Выход при рафинировании возрос, соответственно, до ~87 и 92%.
▪ Производительность печи при плавках брикетированных шихт с аналогичным составом восстановителя с применением древесной щепы повысилась на ~15 и 9%. Удельный расход электроэнергии и минеральной части шихты сократился, соответственно, на ~18 и 17% и ~15%.
Снижение части показателей при увеличении содержания нефтяного кокса в брикетах свидетельствует о необходимости увеличения дозировки "рыхлителя" для этого состава восстановителя.
■ Плавками (рис. 7) на герметизированной печи (со сводом) песчано-глиноземных шихт на основе кварцевого песка и пыли кальцинации глинозема (шихты 1 и 2) и глинозема (3) с добавкой 20% масс. каолина от минеральной части, содержащих 100% нефтяного кокса в брикетах, с применением "рыхлителей" (распад электродов 490-500 мм, средняя мощность печи ~133 кВт) установлено:
▪ Герметизация печи способствует снижению дозировки Снлт. в шихте до 90% или на ~7%;▪ Лучшие показатели получены плавке шихты с использованием в качестве "рыхлителя" древесной щепы. Производительность по сравнению с "базовой" шихтой (без "рыхлителей) повысилась на ~13%, расход электроэнергии и минеральной части снизился, соответственно, на ~11 и 17%;
▪ Снижение дозировки Снлт. в шихте ниже 90% (до ~83%) ухудшает показатели плавки.
■ В плавках шихт с соотношением каолина и ДСК 65:35 масс. и глиноземом с КНТК и газовым углем в соотношении 50:50 и 30:70 по Снлт. с дозировкой Снлт. против стехиометрии, соответственно, 99 и 104%, рассчитанной (см. формулу 1), исходя из содержания нелетучего и общего углерода в смеси восстановителей (распад электродов 400-410 мм, мощность ~182 -194 кВт) установлено:
▪ Производительность печи возросла на ~10 и 22%, а удельный расход электроэнергии и минеральной части шихты снизился, соответственно на ~8 и 11 и ~12 и 17%;
▪ Извлечение V и Ni в силикоалюминий составило ~85-90%.
■ Анализом практических данных ЗАЛКа с учетом фактического и теоретического расхода нелетучего углерода установлено:
▪ Степень окисления Снлт. шихтыкислородом воздуха возрастает по мере увеличения содержания нефтяного кокса в смеси с газовым углем (рис. 8, а). Это компенсируется одновременным повышением дозировки восстановителя в брикетах (рис. 8, б).
Рис. 8 – Изменение степени окисления нелетучего углерода шихты
и дозировки восстановителя в брикетах при различном составе
восстановителя в брикетах
▪ Дозировка нелетучего углерода против стехиометрии в брикетах может быть рассчитана по формуле 1.
(Cнлт.)брик.@ , (1)
где: ∑ (Снлт.)восст. и ∑ (Собщ.)восст. – содержания нелетучего и общего углерода в смеси используемых восстановителей в брикетах, % масс; 114 – эмпирический коэффициент, соответствующий опыту промышленной эксплуатации печей.
ВЫВОДЫ
1. Показано, что на начальной стадии процесса выплавки силикоалюминия восстанавливается SiO2. Оставшийся углерод частично или полностью связывается в SiC, количество которого зависит от массового соотношения Al2O3: SiO2 в шихте. На следующей стадии по мере схода шихты восстанавливается Al2O3. При содержании Si в силикоалюминии выше 60% масс. основным восстановителем Al2O3 является SiC, ниже этого значения – SiC и свободный углерод шихты. Ссвоб. шихты при взаимодействии с Al2O3 образует легкоплавкие расплавы, содержащие оксикарбидные "комплексы" алюминия переменного состава, которые составляют жидкую фазу шлаков и разрушаются при высоких температурах в зоне дуги.
2. Продолжительность пребывания шихты в междуэлектродных зонах низких (1600оС) температур печи при ее замедленном сходе способствует увеличению количества образовавшегося SiC и возникновению в шихте дефицита более активного Ссвоб. шихты, который в этих зонах переходит в расплав с образованием оксикарбидных "комплексов". При "задержке" шихты в высокотемпературных (2000оС) зонах возрастает вероятность взаимодействия уже восстановленного металла с углеродом подины или электродов с образованием карбидов алюминия и кремния.