Разработка технологического процесса термической обработки детали
· Разработать технологический процесс термической обработки стальной детали: Болт шатунный.
· Марка стали: Ст. 40ХН
· Твердость после окончательной термообработки: НВ 302 - 352
Цель задания: практическое ознакомление с методикой разработки технологического процесса термической обработки деталей (автомобилей, тракторов и сельскохозяйственных машин); приобретение навыков самостоятельной работы со справочной литературой, более глубокое усвоение курса, а также проверка остаточных знаний материала, изучаемого в 1 семестре.
Порядок выполнения задания:
1. Расшифровать марку заданной стали, описать ее микроструктуру, механические свойства до окончательной термообработки и указать, к какой группе по назначению она относится.
2. Описать характер влияния углерода и легирующих элементов заданной стали на положение критических точек Ас1 и Ас3, Асm. Рост зерна аустенита, закаливаемость и прокаливаемость, на положение точек Мн и Мк, на количество остаточного аустенита и на отпуск. При отсутствии легирующих элементов в заданной марке стали описать влияние постоянных примесей (марганца, кремния, серы, фосфора, кислорода, азота и водорода) на ее свойства.
3. Выбрать и обосновать последовательность операции предварительной и окончательной термообработки деталей, увязав с методами получения и обработки заготовки (литье, ковка или штамповка, прокат, механическая обработка).
4. Назначить и обосновать режим операций предварительной и окончательной термообработки деталей (температура нагрева и микроструктура в нагретом состоянии, охлаждающая среда).
5. Описать микроструктуру и механические свойства материала детали после окончательной термообработки.
1. Расшифровка марки стали.
Сталь марки Ст.40ХН: хромоникелевая конструкционная легированная сталь содержит 0,39 – 0,41% углерода, 1 % хрома и никеля.
В хромоникелевые стали вводят хром и никель. Никель является дорогой примесью. Хромоникелевые стали являются наилучшими конструкционными сталями; они обладают высокой прочностью и вязкостью, что особо важно для деталей, работающих в тяжелых условиях. Хромоникелевые стали имеют высокую прокаливаемость. К недостаткам хромоникелевых сталей относятся плохая обрабатываемость их резанием, обусловленная присадкой никеля, и большая склонность к отпускной хрупкости второго рода. Хромоникелевые стали подвергают как цементации с последующей термической обработкой, так и улучшению. Хромоникелевые стали широко применяют в авиа- и автотракторостроении.
Хром является легирующим элементом, он широко применяется для легирования. Содержание его в конструкционных сталях составляет 0,7 – 1,1%. Присадка хрома, образующего карбиды, обеспечивает высокую твердость и прочность стали. После цементации и закалки получается твердая и износоустойчивая поверхность и повышенная по сравнению с углеродистой сталью прочностью сердцевины. Эти стали применяются для изготовления деталей, работающих при больших скоростях скольжения и средних давлениях (для зубчатых колес, кулачковых муфт, поршневых пальцев и т.п.). Хромистые стали с низким содержанием углерода подвергают цементации с последующей термической обработкой, а со средним и высоким содержанием углерода – улучшению (закалке и высокому отпуску). Хромистые стали имеют хорошую прокаливаемость. Недостатком хромистых сталей является их склонность к отпускной хрупкости второго рода.
Основным требованием, предъявляемым к легированным конструкционным сталям, является сочетание высокой прочности, твердости и вязкости. Наряду с этим они должны иметь хорошие технологические и эксплуатационные свойства и быть дешевыми. Введение в сталь легирующих элементов само по себе уже улучшает ее механические свойства.
Таблица 1. Массовая доля элементов, % по ГОСТ 4543-71
C | Si | S | Mn | P | Ni | Cr | Cu |
0,39 – 0,41 | 0,17 –0,37 | ≤ 0,035 | 0,50 –0,80 | ≤ 0,035 | 1,00 – 1,40 | 0,45 – 0,75 | ≤ 0,30 |
Таблица 2. Температура критических точек, 0С.
Ас1 | Ас3 | Аr1 | Ar3 |
750 | 790 | - | - |
Назначение:
Шатуны, шпиндели, коленчатые валы, шестерни, муфты, болты и другие ответственные детали.
Таблица 3. Механические свойства при комнатной температуре.
Режим термообработки | Сечение,мм | σ0,2, Н/мм2 | σв, Н/мм2 | δ, % | Ψ,% | KCU,Дж/см2 | HRC | HB | ||
Закалка | 830 – 850 | Масло | до100 | 590 | 735 | 14 | 45 | 59 | 590 | 235 - 277 |
Отпуск | 550-600 | Вода или масло | 375 | 785 | 13 | 42 | 59 | 640 | 246 - 293 |
σ0,2, Н/мм2 - предел текучести условный с допуском на величину пластической деформации при нагружении 0,2%;
σв, Н/мм2- временное сопротивление (предельная прочность при разрыве).
KCU, Дж/см2 - ударная вязкость после разрыва.
Ψ,% - относительное сужение после разрыва.
2. Анализ влияния углерода и легирующих элементов стали на технологию ее термообработки и полученные результаты.
Хром повышает точку А3 и понижают точку А4 (замыкает область γ-железа). Температура эвтектоидного превращения стали (точку А1) в присутствии хрома повышается, а содержание углерода в эвтектоиде (перлите) понижается. При содержании хрома 3 - 5% в стали одновременно присутствуют легированный цементит и карбид хрома Cr7C3, а если более 5% хрома, то в стали находится только карбид хрома. С углеродом хром образует карбиды (Cr7C3,Cr4C) более прочные и устойчивые, чем цементит. Растворяясь в феррите, хром повышает его твердость и прочность и прочность, незначительно снижая вязкость. Хром значительно увеличивает устойчивость переохлажденного аустенита.
В связи с большой устойчивостью переохлажденного аустенита и длительностью его распада, изотермический отжиг и изотермическую закалку хромистой стали проводить нецелесообразно. Хром значительно уменьшает критическую скорость закалки, поэтому хромистая сталь обладает глубокой прокаливаемостью. Температура мартенситного превращения при наличии хрома снижается.
Хром препятствует росту зерна и повышает устойчивость против отпуска. Поэтому отпуск хромистых сталей проводится при более высоких температурах по сравнению с отпуском углеродистых сталей. Хромистые стали подвержены отпускной хрупкости и поэтому после отпуска детали следует охлаждать быстро (в масле). Карбидообразующими элементами являются хром и марганец. При растворении карбидообразующих элементов в цементите образующиеся карбиды называются легированным цементитом. При повышении содержания карбидообразующего элемента образуются самостоятельные карбиды данного элемента с углеродом, так называемые простые карбиды, например, Cr7C3, Cr4C, Mo2C. Все карбиды очень тверды (HRC 70 - 75) и плавятся при высокой температуре.
Растворимость никеля в α-железе увеличивается с понижением температуры; при 700°. . . 5% никеля, при 400°. . . 10% никеля. Ограниченная область αтвердого раствора. Никель повышает твердость и прочность феррита. Открытая область γ твердого раствора; непрерывная растворимость. Высокая вязкость, малая прочность и твердость никелевого аустенита. Повышает критическую точку А4, понижает А1 и А3.
Микроструктура феррита
Необходимо иметь в виду, что карбидообразующие элементы только в том случае повышают устойчивость аустенита, если они растворены в аустените. Если же карбиды находятся вне раствора в виде обособленных карбидов, то аустенит, наоборот, становится менее устойчивым. Это объясняется тем, что карбиды являются центрами кристаллизации, а также тем, что наличии нерастворенных карбидов приводит к обеднению аустенита легирующим элементом и углеродом.
3. Последовательность операции предварительной и окончательной термообработки деталей.
Предел выносливости, Н/мм2 | Термообработка | |
σ -1 | τ -1 | |
594 | 892 | Закалка 845 °С, вода, Отпуск 480°С, вода, σ 0,2=900 Н/мм2, σ в= 1150 Н/мм2 |
506 | 773 | Закалка 845 °С, вода, Отпуск 590°С, вода, σ 0,2= 810 Н/мм2, σ в= 1010 Н/мм2 |
Хромоникелевые стали со средним и высоким содержанием углерода – улучшению (закалке и высокому отпуску).
Доэвтектоидные стали при закалке нагревают до температуры на 30 -50°С выше верхней критической точки Ас3. При таком нагревании исходная феррито-перлитная структура превращается в аустенит, а после охлаждения со скоростью больше критической образуется структура мартенсита. Скорость охлаждения оказывает решающее влияние на результат закалки. Преимуществом масла является то, что закаливающаяся способность не изменяется с повышением температуры масла.
4. Режим операций предварительной и окончательной термообработки детали
Последовательность операций обработки поршневого пальца, изготовленного из стали 45ХН :
Механическая обработка - закалка - высокий отпуск - механическая обработка;
Основная цель закалки стали это получение высокой твердости, и прочности что является результатом образования в ней неравновесных структур – мартенсита, троостита, сорбита. Заэвтектоидную сталь нагревают выше точки Ас1 на 30 - 90 0С. Нагрев заэвтектоидной стали выше точки Ас1 производится для того, чтобы сохранить в структуре закаленной стали цементит, является еще более твердой составляющей, чем мартенсит (температура заэвтектоидных сталей постоянна и равна 850 - 870 0С). Масло недостаточно быстро охлаждает при 550 - 650°С, что ограничивает его применение только тех сталей, которые обладают небольшой критической скоростью закалки.