Смекни!
smekni.com

Разработка технологической линии получения нектара "Мультифруктовый" (стр. 4 из 8)


При низком его содержании слизистые оболочки становятся сухими, роговидными, возникают своеобразные поражения глаз (ксерофтальмия, кератомаляция). Характерной чертой гиповитаминоза является резкое снижение остроты зрения в сумерках, темноте (гемералопия – «куриная слепота»). Это обусловлено тем, что витамин А входит в состав зрительного пурпура сетчатки глаз.

Витамин А встречается исключительно в тканях животных и продуктах животного происхождения: рыбий жир, жиры печени рыб (окунь, палтус), морских и наземных животных, сливочное масло, желток яйца. Однако образуется он из каротиноидов, широко распространенных в растениях. Каратиноидов известно 80, но только 10 из них обладают витаминными свойствами: β-каротин, его изомеры, ликопин, ксантофилл, криптоксантин, зеаксантин. Каротины в растениях являются переносчиками водорода, ксантофиллы, наоборот, легко отдают свой водород, этим объясняется активное участие каротиноидов в окислительно-восстановительных процессах. Доказано, что солнечный свет благоприятствует накоплению каротиноидов в растениях, а изменение их содержания в течение вегетационного периода объясняется влиянием условий внешней среды. Накопление каротиноидов зависит от физиологического состояния растений: молодые растущие растения содержат больше каратиноидов, чем старые, причем по мере созревания плодов происходит увеличение их количества. Наиболее богаты каротиноидами зрелые плоды шиповника, облепихи, рябины, абрикоса, а также красный перец, морковь, зеленый лук, помидоры, щавель, петрушка, шпинат. Каротин усваивается организмом лишь при наличии жиров в пище.

Суточная потребность в витамине А – 1.5-2.5 мг, в каротине – 3-5 мг. Установлено, что 1/3 потребности в этом витамине должна покрываться за счет ретинола (0.5-0.8 мг) а 2/3 – каротина [2].

Азотистые соединения имеют второстепенное значение, так как присутствуют в плодах и ягодах в незначительных концентрациях от 0.2 до 1%. Они представлены белками, аминокислотами, пептидами. Особое место занимают ферменты, из которых наиболее важны гидролитические и окислительно-восстановительные. В свежем плодово-ягодном сырье присутствуют пектолитические ферменты, благодаря действию которых плоды и ягоды размягчаются при созревании. Полифенооксидазы окисляют полифенольные вещества, с этим связано потемнение сырья после его измельчения.

Фенольные соединения растений включают в себя свободные оксибензойные (n-оксибензойная, протокатехиновая, ванилиновая др.) и свободные оксикоричные кислоты (n-кумаровая, кофейная, феруловая и д.), их эфиры и гликозиды, оксикумарины, большую группу флавоноидов (катехины, лейкоантоцианы, флавононы, антоцианы, флавоны и флавонолы) в разных формах и другие соединения. Наиболее распространенными в природе являются флавоноиды. Особенно интенсивно они накапливаются в растительных тканях с повышенным обменом веществ. Они регулируют процесс роста, участвуют в биолгическом окислении. Действие флавоноидов подобно действию на организм витамина Р. Они повышают упругость кровеносных сосудов, предотвращая подкожные кровоизлияния. Поэтому их называют Р-активными веществами. Флавоноиды применяются в медицинской практике как капилляроукрепляющие, противовоспалительные, гипотензивные, гиполидемические средства. Физиологическая потребность человека в них составляет 100-200 мг в день.

К настоящему времени выяснены два основных пути образования фенольных соединений: через шикимовую кислоту (шикиматный) и ацетатно-малонатный. В их биосинтезе используются общебиологические механизмы основного обмена веществ.

Полифенольные соединения играют большую роль в производстве плодово-ягодных напитков. Они участвуют в технологических процессах, влияют на стойкость и вкусовые характеристики продукта. Полифенольные вещества также придают окраску плодам и ягодам. Именно они формируют все оттенки синего и красного цвета. Известно более 1000 природных фенольных соединений, большая часть которых присутствует в плодово-ягодном сырье. Для целого ряда полифенольных веществ, содержащихся в плодах и ягодах, характерна Р-витаминная активность, их называют биофлаваноидами. Считается, что наибольшей Р-витаминной активностью обладают катехины, флавоны, лейкоантоцианы, флавонолы (рутин). антоцианы, рутин обладают антиоксидантными свойствами.

Полимерные фенольные вещества, иначе называемые дубильными – высокомолекулярные соединения, обладающие вяжущим вкусом.

По содержанию Р-витаминных веществ рябину можно поставить на одно из первых мест. В отдельных сортах рябины, например рябине Невежинской, содержание полифенолов достигает 2700 мг/100 г.

Рябина черноплодная (арония) является промышленным источником получения препаратов витамина Р. В северных районах произрастания в аронии накапливается до 4200 мг/100 г Р-активных веществ.

При нарушении целостности плодов сок аронии быстро темнеет, в нем образуется бурый осадок, что связано с конденсацией катехинов во флабофены под действием полифенооксидазы. Поэтому продукты переработки аронии, в которых полифенооксидаза инактивируется при термической обработке, сохраняют витамин Р практически полностью.

Черная смородина имеет большую ценность как Р-витаминное сырье благодаря сочетанию высокого уровня аскорбиновой кислоты и Р-витаминных веществ. Общее содержание Р-активных веществ 800-1200 мг/100 г, до 500-700 мг/100 г – катехинов и антоцианов.

Пигменты – другая группа красящих веществ плодов и ягод, кроме полифенолов. Наиболее важное значение имеют каротиноиды. Они представлены в основном β-каротином и другими желто-оранжевыми пигментами (каротиноидами) – α-, γ-каротином, ликопином, ксантофиллом, криптоксантином и другими соединениями, обладающими А-витаминной активностью. Они присутствуют во всех желто-оранжевых плодах и ягодах.

К числу плодов и ягод, богатых каротиноидами, можно отнести шиповник, боярышник, рябину, облепиху.

В зависимости от вида и района произрастания колеблется как качественный состав, так и количество каротиноидов.

Рябина дикорастущая содержит каротиноидов 6-15 мг/100 г, культурные сорта в меньших концентрациях – в среднем 3-6 мг/100 г. Каротиноиды рябины обыкновенной на 50-75% состоят из β-каротина, кроме того, присутствуют α-каротин, криптоксантин и др.

Каротиноиды облепихи изучены более подробно, чем в других плодах. В алтайских сортах облепихи содержание каротина до 10.9 мг/100 г, в литовских – до 13 мг/100 г, в облепихе Кавказского региона он практически отсутствует. Общее содержание каротиноидов в облепихе может достигать 40 мг/100 г, а каротина – 10-12 мг/100 г.

Минеральные вещества входят в состав многих ферментов, гормонов и обуславливают их активность. В плодах и ягодах минеральные вещества находятся в легкодоступной форме. Кроме того, в плодах и ягодах присутствуют некоторые элементы, редко встречающиеся в других продуктах.

Общее количество минеральных веществ (зола) колеблется в зависимости от районов произрастания, почвенного состава 0.5-3% (на абсолютно сухое вещество), больше всего калия (200-460 мг/100 г), натрия, фосфора.

Из микроэлементов в золе плодов и ягод обнаружены: никель, кобальт, молибден, барий, титан, ванадий, цирконий, хром, медь, марганец и др.

Ароматические вещества появляются в основном после созревания плодов. Они являются сложными смесями различных веществ, присутствуют в небольших концентрациях.

К ним относятся углеводороды (терпены), альдегиды, спирты, эфиры, кетоны и др. Особенно много их содержится в цедре цитрусовых плодов в виде эфирных масел [3].

2. Технологическая сущность процесса очистки воды

Вода является основным компонентом напитков, поэтому качество ее должно быть безупречным. Она должна быть чистой, прозрачной, бесцветной, приятной на вкус, без запаха.

Получение высококачественных соков и нектаров из концентратов требует использование воды определенного и стабильного состава.

Содержание солей жесткости, хлоридов, сульфатов, суммарное количество растворенных солей и щелочность воды в первую очередь влияют на качество безалкогольных напитков.

Щелочность воды снижает кислотность напитка, поэтому требуется увеличение количества добавляемой лимонной кислоты. Расход лимонной кислоты также увеличивается при превышении допустимых пределов концентрации солей жесткости, поскольку гидрокарбонаты кальция и магния взаимодействуют с пектиновыми и дубильными веществами соков, образуя комплексные соединения, вызывающие помутнение напитка. Сульфаты и хлориды участвуют в формировании вкуса напитка. Общее количество растворенных солей не только влияет на вкус, но и может обуславливать химическую нестабильность, выпадение осадка, изменение внешнего вида напитка.

Сок, полностью идентичный натуральному, может быть получен только при разбавлении концентрата обессоленной водой. Поскольку ее производство достаточно дорого, допускается применение умягченной воды.