1) Структурная схема тиристорного преобразователя.
В целом тиристорный преобразователь, работающий в режиме непрерывного тока, с достаточной точностью можно представить одним динамическим безынерционным звеном с чистым запаздыванием, передаточная функция которого имеет вид:
(6.13)где:
- общее время запаздывания; -время запаздывания силового преобразователя;С достаточной точностью тиристорный преобразователь, работающий в режиме непрерывного тока, можно представить звеном:
(6.15)где:
(с).Структурная схема двигателя постоянного тока при управлении напряжением якоря.
При математическом описании двигателя постоянного тока с независимым возбуждением принимаются допущения:
1) размагничивающее действие реакции якоря считается скомпенсированным;
2) индуктивность и сопротивление якорной цепи являются постоянными величинами;
3) магнитный поток линейно зависит от намагничивающей силы.
Для построения структурной схемы двигателя пишем систему дифференциальных уравнений в операторном виде:
где Eтп(p)- изображение ЭДС тиристорного преобразователя;
Едв(p) - изображение противо-ЭДС двигателя;
Iя(p) - изображение тока якоря;
rя.ц. - суммарное сопротивление якорной цепи;
Тя.ц. - суммарная постоянная времени якорной цепи;
С - конструктивный коэффициент двигателя;
W(p) - изображение скорости вращения электродвигателя;
Мдв(p) - изображение момента развиваемого двигателем;
Мс(p) - изображение момента сил статических сопротивлений;
JS - суммарный момент инерции привода, приведенный к валу двигателя.
Структурные схемы регуляторов представим в виде Wрт и Wдс , которые при настройке контуров будут определены.
Датчики тока и скорости представлены в виде Кдт и Кдс .
Структурная схема привода приведена в приложении____
В данной структурной схеме учтем нелинейности регуляторов и тиристорного преобразователя. Ограничение на нелинейности тиристорного преобразователя ±Еdo.
Статическая механические характеристики замкнутой системы абсолютно жесткие.
В статике Uзт и Uост равны, следовательно:
(6.16)Настройка контура тока на модульный оптимум:
Постоянная времени якорной цепи:
Т.к.
, то в качестве некомпенсируемой постоянной времени принимаем = = 0,0017(с).Кроме того исследованиями установлено, что О.С. по ЭДС не существенно усложняет структуру регуляторов. Поэтому при выводе регуляторов учитываться не будет.
В данном случае объект компенсации представляет собой апериодическое звено с
,поэтому должен быть использован пропорционально-интегральный (ПИ) регулятор.
(6.18) (6.19)Преобразуем полученное выражение:
(6.20)Настройка контура скорости на симметричный оптимум:
Для настройки контура скорости свернем внутренний контур тока в одно звено:
(6.21)При настройке контура скорости можно пренебречь старшими степенями:
(6.22)Необходимо условно отбросить внешние воздействия, а также разорвать обратную связь. Запишем передаточную функцию для разомкнутого контура скорости:
(6.23)Запишем передаточную функцию контура тока, настроенного на симметричный оптимум, причем
(6.24)Приравняем выражения (6.24) и (6.25):
(6.25)Из выражения (6.25) находим
с учетом того, что . (6.26)Для получения меньшего перерегулирования на вход системы ставим фильтр:
(6.27)Математическая модель привода в среде Matlab приведены в приложении___
Определяем параметры системы:
(с) (Ом) (В/рад/с) (Н*м/А)Скорость прокатки задаются автоматически:
Для обеспечения такого задания скорости на вход системы ставят программатор.
Тахограмма задания скорости – в приложении. Наброс момента осуществляется через 1с после подачи соответствующего сигнала задания скорости.
7. Проверка правильности расчета мощности и окончательный выбор двигателя
По результатам расчета переходных процессов за цикл работы можно рассчитать эквивалентный ток и следовательно проверить правильность выбора электродвигателя. Эквивалентный ток рассчитывается по следующей формуле:
(7.1)Тогда:
(А)Проверим правильность выбора двигателя по коэффициенту загрузки:
(7.2)Откуда:
Двигатель загружен на 87,4%, что свидетельствует о правильности его выбора.
8. Разработка схемы электрической принципиальной
Разработка схемы силовых цепей
Управление выпрямителя (UZ1) подключается к промышленной сети переменного тока, через автоматический выключатель (QF1) с помощью магнитного пускателя КМ1. Выпрямленные напряжения и ток с выхода преобразователя подаются на двигатель постоянного тока М1. С целью уменьшения пульсации тока и расширение зоны коммутации двигателя в цепь нагрузки включены два сглаживающих дросселей (Lдр). Обмотка возбуждения двигателя управляется с помощью тиристорного преобразователя (UZ2).Необходимый ток возбуждения устанавливается реостатом RP1.
Управляемый выпрямитель UZ1 осуществляет управление привода. В его состав входит: трансформатор, сглаживающий реактор, шунт, предохранители, система управления (СИФУ), систему защиты, регуляторы тока и скорости. К нему подводится сигнал от датчика скорости и сигналы управления тиристорами мостами (вперед, назад).
Датчик скорости выполнен в виде тахогенератора BR1.
С помощью SB1 и SB2 производится пуск и останов привода.
Для защиты силовых цепей и цепей управления от токов короткого замыкания и перегрева применяются автоматические выключатели.
Выбор элементов схемы
1) Выбор двигателя постоянного тока М1 – МП1100-620У3(см. пункт 4.1).
2) Выбор тахогенератора BR
Выбор производим по скорости вращения
ПТ-3111 ТУ 16-512.421-77
- Ном.скорость вращения : nн=660 об/мин;
- Ном.напряжение питания : Uя=220 В;
- Ном.ток якоря : Iя=0,5 А ;
- Ном.сопротивления якорной цепи : Rя=31,1 Ом ;
3) Выбор преобразователей UZ1, UZ2 тиристорный преобразователь ТПП1 (см. пункт 4.2).