Смекни!
smekni.com

Расчет абсорбционной установки (стр. 2 из 6)

Абсорбция (десорбция) - диффузионный процесс, в котором участвуют две фазы: газовая и жидкая. Движущей силой процесса абсорбции (десорбции) является разность парциальных давлений поглощаемого компонента в газовой и жидкой фазах, который стремится перейти в ту фазу, где его концентрация меньше, чем это требуется по условию равновесия.

Обозначим парциальное давление поглощаемого компонента в газовой фазе через рг, а парциальное давление того же компонента в газовой фазе, находящейся в равновесии с абсорбентом, через рр. Если рг > рр, то компонент газа переходит в жидкость, т.е. протекает процесс абсорбции (рис. VI-1, а). Если рг < рр, то поглощенные компоненты газа переходят из абсорбента в газовую фазу, т.е. осуществляется процесс десорбции.

Чем больше величина рг - рр, тем интенсивнее осуществляется переход компонента из газовой фазы в жидкую. При приближении системы к состоянию равновесия движущая сила уменьшается, и скорость перехода компонента из газовой фазы в жидкую замедляется.

Поскольку парциальное давление компонента пропорционально его концентрации, то движущая сила процесса абсорбции или десорбции может быть выражена также через разность концентраций компонента в газовой Dу = y - ур или жидкой фазе Dх = хр - х.

Количество вещества М, поглощаемого в единицу времени при абсорбции или выделяемого при десорбции, прямо пропорционально поверхности контакта газовой и жидкой фаз F, движущей силе процесса и коэффициенту пропорциональности К, зависящему от гидродинамического режима процесса и физико-химических свойств системы.

1. Физико-химические основы процесса

В процессе абсорбции содержание газа в растворе зависит от свойств газа и жидкости, температуры, давления и состава газовой фазы.

В результате растворения в жидкости бинарной газовой смеси (распределяемый компонент А, носитель В) взаимодействуют две фазы (Ф = 2), число компонентов равно трем (К = 3) и, согласно правилу фаз, число степеней свободы системы равно трем.

В системе газ - жидкость переменными являются температура, давление и концентрации в обеих фазах. Таким образом, в состоянии равновесия при постоянных значениях температуры и общего давления зависимость между парциальным давлением газа (или его концентрацией) и составом жидкой фазы однозначна. Данная зависимость выражается через закон Генри, согласно которому парциальное давление растворенного газа пропорционально его мольной доле в растворе или растворимость газа (поглощаемого компонента) в жидкости при данной температуре пропорциональна его парциальному давлению над жидкостью:

Значения коэффициента Генри для данного газа зависят от природы поглотителя и газа и от температуры, но не зависят от общего давления в системе.

Для идеальных растворов на диаграмме зависимость равновесных концентраций от давления изображается прямой, имеющей наклон, равный коэффициенту Генри. С повышением температуры увеличивается значение коэффициента Генри и соответственно уменьшается растворимость газа в жидкости. Таким образом, растворимость газа в жидкости увеличивается с повышением давления и снижением температуры.

Когда в равновесии с жидкостью находится смесь газов, закону Генри может следовать каждый из компонентов смеси в отдельности.

Закон Генри применим к растворам газов, критические температуры которых выше температуры раствора, и справедлив только для идеальных растворов. Поэтому он с достаточной точностью применим лишь к сильно разбавленным реальным растворам, приближающимся по свойствам к идеальным, то есть соблюдается при малых концентрациях растворенного газа или при его малой растворимости. Для хорошо растворимых газов, при больших концентрациях их в растворе, растворимость меньше, чем следует из закона Генри. Для систем, не подчиняющихся этому закону, линия равновесия представляет собой кривую, которую строят обычно по опытным данным.

1.1 Устройство абсорбционных аппаратов

Абсорберы - аппараты, в которых осуществляются абсорбционные процессы. Подобно другим процессам массопередачи, абсорбция протекает на поверхности раздела фаз. Поэтому абсорберы должны иметь развитую поверхность соприкосновения между жидкостью и газом. По способу образования этой поверхности абсорберы условно разделяются на следующие 4 группы:

поверхностные и пленочные;

насадочные;

барботажные (тарельчатые);

распыливающие.

Поверхностные абсорберы. Эти абсорберы используют для поглощения хорошо растворимых газов. В указанных аппаратах газ проходит над поверхностью неподвижной или медленно движущейся жидкости. Так как поверхность соприкосновения в таких абсорберах мала, то устанавливают несколько последовательно соединенных аппаратов, в которых газ и жидкость движутся противотоком друг к другу. Для того, чтобы жидкость перемещалась по абсорберам самотеком, каждый последующий по ходу жидкости аппарат располагают несколько ниже предыдущего. Для отвода тепла, выделяющегося при абсорбции, в аппаратах устанавливают змеевики, охлаждаемые водой или другим охлаждающим агентом, либо помещают абсорберы в сосуды с проточной водой.

Пленочные абсорберы. Эти аппараты более эффективны и компактны, чем поверхностные абсорберы. В пленочных абсорберах поверхностью контакта фаз является поверхность текущей пленки жидкости. Различают следующие разновидности аппаратов данного типа: трубчатые абсорберы, абсорберы с плоско - параллельной или листовой насадкой, абсорберы с восходящим движением пленки жидкости.

Насадочные абсорберы. Одним из наиболее распространенных абсорберов поверхностного типа является насадочный колонный аппарат. Он отличается простотой устройства и пригодностью к работе с агрессивными средами. Его применение допустимо как в тех случаях, когда массообмен контролируется диффузионным сопротивлением жидкой фазы, так и тогда, когда решающим является сопротивление газовой фазы. Насадочные абсорберы представляют собой колонны, загруженные насадкой - твердыми телами различной формы; при наличии насадки увеличивается поверхность соприкосновения газа и жидкости. В насадочной колонне насадка укладывается на опорные решетки, имеющие отверстия или щели для прохождения газа и стока жидкости. Последняя с помощью распределителя равномерно орошает насадочные тела и стекает вниз. В насадочной колонне жидкость течет по элементу насадки в виде тонкой пленки, поэтому поверхностью контакта фаз является в основном смоченная поверхность насадки, и насадочные аппараты можно рассматривать как разновидность пленочных. Однако в последних пленочное течение жидкости происходит по всей высоте аппарата, а в насадочных абсорберах - только по высоте элемента насадки.

Барботажные (тарельчатые) абсорберы. Тарельчатые абсорберы представляют собой вертикальные колонны, внутри которых размещены горизонтальные перегородки - тарелки. С помощью тарелок осуществляется направленное движение фаз и многократное взаимодействие жидкости и газа. В барботажных абсорберах газ выходит из большого числа отверстий и барботируется через слой жидкости либо в виде отдельных пузырьков (при малых скоростях газа), либо в виде струй (при повышенных скоростях газа), переходящих все же в поток пузырьков на некотором расстоянии от точки истечения газа. В результате образуется газожидкостная (гетерогенная) система нижняя часть, которой состоит из слоя жидкости с распределенными в ней газовыми пузырьками, средняя - из слоя ячеистой пены, а верхняя - из зоны брызг, возникающих при разрыве оболочек уходящих газовых пузырей. Высоты этих слоев изменяются со скоростью газа; с ее возрастанием уменьшается нижний слой и увеличивается средний (в пределах зависящих от физических свойств жидкости).

Структуру газожидкостного слоя можно охарактеризовать его высотой, газосодержанием и размером газовых пузырьков. При истечении газа из одиночного затопленного отверстия с определенным диаметром, скорость которого ниже известного предела образуются одиночные свободно всплывающие пузырьки, диаметр которых, в рассматриваемом режиме, не зависит от расхода газа. Заметим, однако, что при интенсивном истечении газа образуются пузырьки различных размеров, которые при подъеме обычно деформируются, приобретая эллипсоидальную и полусферическую форму. Кроме того, газовые пузырьки имеют вертикальную траекторию движения (иногда даже спиральную).

Уровень жидкости при ее движении вдоль барботажной тарелки на пути от входа до перетока понижается на некоторую величину, вследствие гидравлического сопротивления. Это приводит к неравномерному распределению газового потока по сечению абсорбера; большие количества газа будут проходить там, где высота слоя жидкости меньше.

Площадь живого сечения переточного устройства (трубы, сегмента) определяется по объемному расходу жидкости и ее скорости, принимаемой во избежании захвата газа не выше 0,10 - 0,12 м/с.

Тарельчатые колонны удобны для крупнотоннажных производств при относительно малых расходах жидкости, недостаточных для равномерного смачивания насадки, а также для процессов, сопровождающихся колебаниями температуры, так как периодическое расширение и сжатие корпуса может разрушить хрупкую насадку. На тарелках проще установить змеевики для подвода и отвода теплоты. Тарельчатые колонны также применяются при обработке потоков с твердыми примесями или при выделении твердого осадка.

По способу слива жидкости с тарелок барботажные абсорберы можно подразделить на колонны с тарелками со сливными устройствами и без них.