Смекни!
smekni.com

Расчет аппарата воздушного охлаждения (стр. 3 из 4)

2.4 Коэффициент теплоотдачи со стороны керосинового дистиллята

Коэффициент теплоотдачи со стороны керосинового дистиллята будет одинаков для оребренных и гладких труб.

Средняя температура керосинового дистиллята в АВО:


.

Коэффициент теплопроводности:

Вт/(м·К),

Вт/(м·К).

Теплоемкость:

кДж/(кг·К),

кДж/(кг·К).

Относительная плотность:

,

Кинематическую вязкость принимаем по практическим данным [2]:

м2/с.

Минимальная скорость движения керосинового дистиллята, при которой обеспечивается устойчивый турбулентный поток (Re=104):

м/с.

Для проектируемого холодильника выбираем

м/с >
. Тогда

.

Re > 104, коэффициент теплоотдачи со стороны керосинового дистиллята:

Вт/(м2·К),

Где

- критерий Прандтля при температуре Тср1=356 К,

- критерий Прандтля при температуре стенки трубы со стороны керосинового дистиллята Тω1,

- поправочный коэффициент, учитывающий отношение длины трубы к ее диаметру. Для нашей трубы =1.

Находим критерий Прандтля при температуре Тср1=356 К:

.

Предварительно принимаем температуру стенки трубы со стороны керосинового дистиллята Тω1=354 К. определяем критерий Прандтля при этой температуре:

.

Коэффициент теплоотдачи со стороны керосинового дистиллята:

Вт/(м2·К).

2.5 Расчет коэффициента теплоотдачи со стороны воздуха в случае применения гладких труб

Скорость воздушного потока в сжатом сечение:

м/с,

где VД – действительный секундный расход воздуха из паспорта на вентилятор, м3/с,

Fс – площадь сжатого сечения в пучке труб, через которое проходит воздух, (подробно рассчитывается в [2]), м2.

Средняя температура воздуха:

.

Кинематическую вязкость воздуха принимаем по [2]:

м2/с.

Величина критерия Рейнолдса:

.

Коэффициент теплоотдачи:

Вт/(м2·К),

где

=1 - поправочный коэффициент, учитывающий угол атаки;

λ =0,0273 Вт/(м·К) – коэффициент теплопроводности воздуха при его средней температуре [2].

Вт/(м2·К).

2.6 Расчет коэффициента теплопередачи для пучка гладких труб

Для биметаллических труб и загрязненной поверхности теплообмена:

, Вт/(м2·К),

где

- тепловое сопротивление внутреннего слоя загрязнения, 0,00035 (м2·К)/Вт [2],

- тепловое сопротивление латунной стенки, 0,000022 (м2·К)/Вт [2],

- тепловое сопротивление алюминиевой трубы, 0,000073 (м2·К)/Вт [2],

- тепловое сопротивление наружного слоя загрязнения, 0,00060 (м2·К)/Вт [2],

Вт/(м2·К).

2.7 Расчет среднего температурного напора

Средний температурный напор определяется по методу Белоконя [2]:

- соответственно большая и меньшая разность температур, определяемая по формулам:

,

,

Где

- разность среднеарифметических температур горячего и холодного теплоносителей

,

А ΔТ – характеристическая разность температур:

,

где ΔТ1 – перепад температур в горячем потоке;

ΔТ2 – перепад температур в холодном потоке;

Р – индекс противоточности.

ΔТ1=393-343=50 К

ΔТ2 =315-295=20 К

К

К

К,

К,

К.

Температура стенки трубы со стороны керосинового дистиллята:

К,

Найденная температура близка к ранее принятой.

2.8 Расчет коэффициента теплоотдачи при поперечном обтекании воздухом пучка оребренных труб

Коэффициент теплоотдачи при спиральном оребрении труб:

,

где

- коэффициент теплопроводности воздуха при его средней температуре, Вт/(м·К) [2];

- скорость воздушного потока в сжатом сечении одного ряда труб оребренного пучка, м/с [2];

- динамическая вязкость воздуха при средней температуре, Па·с [2];

Pr – критерий Прандтля при средней температуре [2];

- средняя толщина ребра, м [2].

Подставив значения всех величин:

Вт/(м2·К).

2.9 Расчет приведенного коэффициента теплоотдачи со стороны воздуха в случае пучка оребренных труб

Приведенный коэффициент теплоотдачи для круглых ребер:

,

где Fр – поверхность ребер, приходящаяся на 1 м длины трубы, м2/м [2];

Fn – полная наружная поверхность 1 м трубы, м2/м [2];

Е – коэффициент эффективности ребра, учитывающий понижение температуры по мере удаления от основания, находится по рис. 2.6 [2];

- коэффициент, учитывающий трапецивидную форму сечения ребра, определяется по рис. 2.7 [2];

- экспериментальный коэффициент, учитывающий неравномерность теплоотдачи по поверхности ребра;

- тепловое сопротивление загрязнения наружной поверхности трубы, 0,0006 м2·К/Вт.

Вт/(м2·К).

2.10 Расчет коэффициента теплопередачи для пучка оребренных труб

Ведем расчет на единицу гладкой поверхности трубы по [2]:

, Вт/(м2·К),

где Fст - поверхность гладкой трубы по наружному диаметру, приходящаяся на на 1 м ее длины. Все остальные величины и обозначения см. выше.

Вт/(м2·К).

Можно сделать вывод о том, что при прочих равных условиях оребрение гладкой поверхности трубы со стороны воздуха приводит к значительному увеличению коэффициента теплопередачи.

2.11 Расчет поверхности теплообмена холодильника