Применение вихревой трубы в различных технологиях целесообразно при наличии неиспользуемой энергии перепадов давления для очистки и охлаждения любых газов и газовых смесей в том числе содержащих жидкие и конденсирующиеся примеси. Так, в южных городах существует проблема - из-за высокой температуры воздуха из крана для холодной воды течет отнюдь не холодная, а теплая вода и в начале 90-х годов исследователи решили использовать вихревую трубу для разделения воды на горячую и холодную. Результаты оказались сенсационными. Температура вращающейся в трубе воды повышалась, будто ее согревал невидимый кипятильник.
Работа вихревой трубы заключается в создании сверхзвукового закрученного потока газа и последующего его разделения на холодный и горячий (или тёплый) потоки, образующиеся в результате проявления вихревого эффекта Ранка. Особенно эффективно вихревая труба может быть использована при добыче и транспорте газа, когда требуется многократно снизить пластовое давление газа перед подачей в магистральный трубопровод с 200 - 250 ат до 50 -60 ат и на газораспределительных станциях с 20 - 35 ат до 1 - 6 ат. Дополнительная установка достаточно простого оборудования при незначительных затратах даёт возможность повысить выход газоконденсата из газа на 20 - 25 % и более. Другое перспективное использование вихревой трубы основано на применении электрогидродинамического течения газа для осуществления эффекта Ранка. Это даёт возможность создать холодильное устройство, в котором отсутствуют агрессивные хладагенты и компрессор. Вихревые трубы могут быть использованы как индивидуально, так и в технологической схеме с теплообменником-рекуператором и сепаратором. Вот насколько обширно применение вихревых труб. В настоящее время вихревая техника широко внедрена в промышленность: вихревые управляющие клапаны в системах управления тягой ракетных двигателей, вихревые холодильники, вихревые системы очистки, осушки газа в газовой промышленности, вихревые системы газоподготовки для нужд пневмо-газоавтоматики.
Рисунок 1.1 – Принципиальная схема термостата
1 – подогреваемый объект; 2 – охлаждаемый объект; 3 – противоточная вихревая труба;
4 – двухконтурная вихревая труба; 5 – теплообменники; 6 – эжектор.
Работа холодильно-нагревательного аппарата осуществляется следующим образом: при работе сжатый воздух из магистрали разделяется на два потока по числу вихревых труб. Один из потоков сжатого воздуха, минуя теплообменник 5, подается к сопловому устройству двухконтурной вихревой трубы 4, проходя через которую охлаждается. Одна часть воздуха поступает в эжектор 6 в качестве эжектируемого потока. Другая часть воздуха направляется в подогреваемый объект 1, где нагреваясь, и минуя теплообменник 5 поступает в эжектор 6 в качестве эжектирующего потока.
Второй поток сжатого воздуха, проходя через теплообменник 5 поступает в противоточную вихревую трубу3. Поток, выходящий со стороны горячего конца, поступает в двухконтурную вихревую трубу 4. Выходя из нее часть воздуха, направляется в эжектор 6 в качестве эжектируемого газа. Другая часть воздуха поступает в подогреваемый объект 1, и минуя теплообменник 5 поступает в эжектор 6 в качестве эжектирующего газа. Поток, выходя из отверстия диафрагмы противоточной вихревой трубы 3, потсупает в охлаждаемый объект 2. Там охлаждаясь, воздух, минуя теплообменник 5 выходит в атмосферу.
Схема термодинамического расчета с обозначением характерных узлов и сечений представлена на рисунке 1.2.
Принятые допущения:
– гидравлические сопротивления в такте установки не существенны;
– изобарная теплоемкость газа в рабочем интервале температур принимается постоянной
;– давление холодного потока считается равным давлению среды, в которую происходит истечение;
– в виду малых скоростей в рассматриваемых сечениях расчеты производятся по параметрам торможения.
Для расчета выбираются трубы с относительной длиной камеры энергоразделения
. Значение эффектов охлаждения противоточной вихревой трубы в зависимости от степени расширения сжатого воздуха и доли охлажденного потока сведены в таблице 1.Таблица 1.1
0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,86 | 0,88 | 0,9 | ||
0,852 | 0,86 | 0,87 | 0,882 | 0,896 | 0,912 | 0,937 | 0,934 | 0,942 | ||
0,828 | 0,841 | 0,855 | 0,871 | 0,889 | 0,91 | 0,925 | 0,932 | 0,94 | ||
0,8 | 0,924 | 0,943 | 0,862 | 0,883 | 0,906 | 0,922 | 0,928 | 0,937 |
Значение относительной доли охлажденного потока
и эффектов охлаждения вихревой трубы с дополнительным потоком сведены в таблице 2.Таблица 1.2
0,2 | 0,4 | 0,6 | 0,8 | 1 | 1,2 | 1,4 | 1,6 | 1,8 | 2 | ||
0,85 | 0,845 | 0,842 | 0,856 | 0,875 | 0,894 | 0,913 | 0,915 | 0,938 | 0,944 | ||
0,87 | 0,865 | 0,862 | 0,876 | 0,895 | 0,912 | 0,907 | 0,92 | 0,939 | 0,94 | ||
0,94 | 0,937 | 0,935 | 0,903 | 0,904 | 0,907 | 0,9 | 0,93 | 0,943 | 0,947 |
Схема термодинамического расчета:
Рисунок 1.1 – Схема термодинамического расчета
1 – подогреваемый объект; 2 – охлаждаемый объект; 3 – противоточная вихревая труба;
4 – двухконтурная вихревая труба; 5 – теплообменники; 6 – эжектор.
2 Определение оптимальных режимов работы схемы
Опишем работу отдельных узлов аналитическими зависимостями.
Рассмотрим теплообменник 5а.
Запишем уравнение теплового баланса для теплообменника 5а с учетом уравнения сохранения энергии
Так как
, а , то уравнение для теплообменника 5а примет вид . ; ; ; .Расходы найдем по формулам:
; .Давление:
;Рассмотрим теплообменник 5б.
Запишем уравнение теплового баланса для теплообменника 5б с учетом уравнения сохранения энергии