В итоге теплопотребление в зоне подогрева составит
Qп=84114,72+39645,01+6040,8+147343,8+6743,48+25574,4+14358,64=
=323820,85 кДж=323,8 МДж
Ширину слоя (хорда lх) и контактную поверхность его с барабаном (1q)определим исходя из соотношений размеров сегмента материалов в поперечном сечении участка. Из практических данных принимаем центральный угол в зоне подогрева 82,5°. Тогда
lx=Dпsinα/2=5·sin(82,5/2)=3,296 м.
Lq=πDпsinα/360=3,14·5·82,5/360=3,598 м.
Эффективную длину лучей газового потока определяем по формуле
где Sпер.- периметр свободного сечения печи, м.
Snep=
==
По практическим данным для зоны подогрева можно принять коэффициент заполнения барабана печи φ= 5,6 - 8,0 %. Выбираем φ = 6,8 %.
Тогда
м.Определим состав газов по зонам.
Согласно данным расчета процесса горения топлива, в продуктах сгорания 100 м3 газа присутствует 98,9 м3 СО2; 194 м3 Н2О; 794,3 м3N2; 15,6 м3 О2. Для зоны спекания состав газов соответствует составу продуктов сгорания топлива,
т. е. СО2=8,968 %; Н2О=17,592 %; N2=72,026 %;О2=1,415 %.
В зоне кальцинации полностью разлагаются карбонаты. Тогда объем газов от горения топлива при его расходе 25 % от веса сухого боксита (практические данные) составит 1102,8·0,25=275,7 м3.
С учетом объема СО2, выделившегося при разложении карбонатов (см. табл. 15) в количестве 14,08 м3, общий объем газов в зоне кальцинации составит 14,08+275,7=289,78 м3. Средний объем газов в зоне кальцинации равен 275,7+0,5·14,08=282,74 м3. Тогда состав газов в зоне кальцинации будет следующим:
%; %; % %В зоне подогрева в газовую фазу переходит 11,55 кг Н2О из исходной шихты, или 11,55·22,4/18=14,37 м3.
Общий объем газов в конце зоны подогрева составит 282,74+14,37=297,11м3.
Средний объем газов равен 282,74+0,5·14,37=289,925 м3.
В зоне сушки в газовую фазу переходит из шихты внешняя влага в количестве 154,6 кг, или 154,6·22,4/18=192,391 м3. Общий объем газов в конце зоны равен объему отходящих газов, т.е. 192,391+297,11=489,504 м3. Средний объем газов в зоне составляет 192,391·0,5+297,11=393,31 м3. Тогда состав газов в зоне сушки таков:
%; %; %; %Среднюю температуру газов в зоне подогрева находим по формуле логарифмического усреднения между газами и материалом
Здесь tгн=1250°С;tгк=750°С; tш=450°С,
Степень черноты СО2 и Н2О находим по графикам
При PСО2Sэф =0,1338·7,74·101,325=101,27 кПа·м
tГ=960°C;εCO2=0,2
РH2OSэф=0,1921·7,47·101,325=145,4 кПа·м;
tГ=960°С; ε΄H2O=0,35; εH2O=1,8·0,35=0,63;
εГ=0,2+0,63=0,83.
Степень развития кладки в зоне подогрева составляет
Вт/(м2·К4).Определяем величину теплового потока излучением:
Вт/м2.Средняя скорость движения газов в зоне подогрева равна
м/с;тогда конвективный тепловой поток составит величину
qk=10,476·0,87(960-450)=4648,2 Вт/м2.
Средняя температура кладки составит tk=(960+273)/2=705°С. Тогда
Вт/м2.Длина зоны подогрева составит
м.В зоне кальцинации начальную температуру газов принимаем tгн=1400°С; конечную температуру газов tгк=1250°С; температуру шихты tш=875°С. Средняя температура газов в зоне равна
˚С.Средняя температуpa кладки в зоне составляет
tк=(1320+875)/2=1100 °С.
Состав газов в зоне кальцинации (в соответствии с предыдущими расчетами): 11,23% СО2; 17,15% Н2O.
В зоне кальцинации происходит термическое разложение карбонатов, натриевого алюмосиликата, образование основной массы (до 90 %) алюмината и феррита натрия и двухкальциевого силиката, появляется небольшое количество жидкой фазы. Температура шихты на выходе из зоны достигает 1000°С, температура газов на входе в зону - 1400 °С. Унос пыли составляет 25 % от общего пылеуноса.
Теплопотребление в зоне кальцинации по статьям идет:
• на нагрев шихты (спека) до 1000 °С
0,88·128,8·(1000-750)·16=453376 кДж=453,4 МДж,
где 0,88 - теплоемкость спека, кДж/(кг·К);
• подогрев пыли до 1250 °С
096·41,95·(1250-750)·16=322176 кДж=322,2 МДж,
где 0,96 - теплоемкость пыли, кДж/(кг·К);
• нагрев технологических газов (СО2) до 1250 °С
2,202·14,37·(1250-750)·16=253141,9 кДж=253,14 МДж;
• разложение карбонатов.При этом количество СаСО3 (молекулярная масса - 100) в шихте (в известняке и боксите) (табл. 17) через СаО (молекулярная масса - 56) равно
Тогда в соответствии с уравнением
СаСОз=СаО+СО2 - 178000 кДж
затраты тепла составят
(4+5,365)·16(100/56)·(178000/100)=476277,1 кДж=476,3 МДж.
Количество Na2CO3 (молекулярная масса - 106) в шихте (в соде и оборотном растворе) через Na2O (молекулярная масса – 62) равно
Тогда в соответствии с уравнением
Na2CO3 =Na2O+СО2 - 322000 кДж
затраты тепла будут равны
=2791220,65 кДж=2791,22 МДж.При разложении натриевого алюмосиликата количество Na2O·Аl2О3·2SiО2 (молекулярная масса - 284) на 1 тонну шихты рассчитывают по SiO2 (молекулярная масса - 60) в белом шламе:
0,66·284·16/(2·60)=24,9 кг.
Ввиду отсутствия экспериментальных данных по тепловому эффекту разложения этого соединения принимаем, что он равен тепловому эффекту реакции разложения Na2O·Аl2Оз·2SiО2. Тогда принимаем
Na2O·Аl2Оз·2SiО2=Na2O+Аl2О3+2SiO2 - 261000 кДж;
22883 кДж=22,8 МДж.Теплоту образования алюмината натрия определяем по содержанию Аl2О3 (молекулярная масса 102) в спеке (см. табл. 17) и исходя из уравнения
Na2O+Аl2Оз=Na2O·Аl2О3 + 230000 кДж.
Тогда
1964470,6 кДж=1964,5 МДж.Теплоту образования ферритов натрия устанавливаем по Fe2O3 (молекулярная масса - 160) в спеке согласно уравнению
Na2O+Fe2O3=Na2O·Fe2О3 + 178000 кДж;
409400 кДж=409,4 МДж.Теплоту образования титаната натрия устанавливаем по TiO2 (молекулярная масса - 80) в спеке в соответствии с уравнением
Na2O+TiO2=Na2O·TiO2 + 178000 кДж.
Тогда
60520 кДж=60,5 МДж.Теплоту образования двухкальциевого силиката устанавливаем по СаО (молекулярная масса - 56) в спеке в соответствии с уравнением
2СаО+8SiO2=2CaO·SiО2 + 119000 кДж,