Смекни!
smekni.com

Расчет вращающейся печи для спекания боксита производительностью по спеку (стр. 1 из 8)

G = 16 т/час»

Исходные данные для расчета.

1. Состав обрабатываемого боксита, %:

Al2O3 SiO2 Fe2O3 CaO TiO2 П.П.П. прочие
51,9 4,2 23,0 4,0 1,7 14,4 0,8
П.П.П. – потери при прокаливании

2. Состав, используемого в процессе спекания известняка, %

CaO SiO2 П.П.П. прочие
51,1 1,7 46,1 1,1

3. Основные технологические параметры

Содержание Na2CO3 в соде составляет 98%;

4. Печь отапливается природным газом следующего состава, (в объемных процентах):

CH4с.г. C2H6с.г. C3H8с.г. C4H10с.г. N2с.г. CO2с.г.
94,7 1,2 0,5 0,3 2,9 0,4

Влагосодержание 1м3 сухого газа равно gс.г.=10,3 г/м3.

5. Подогрев воздуха, подаваемого на горение, осуществляют в барабанном или рекуперативном холодильнике (выбрать самостоятельно). Температура подогрева воздуха tв и коэффициент избытка воздуха α также выбираются самостоятельно в пределах допустимых границ.

ВВЕДЕНИЕ

Для каждой алюминиевой руды существует наиболее выгодный способ переработки. Определяющей является массовая доля каждого из трех основный оксидов, содержащихся в технологическом сырье (Al2O3, Fe2O3, SiO2), Содержание CaO, H2O, CO2, TiO2 и других оксидов имеет второстепенное значение. Так для бокситов с низким содержанием кремния рекомендуется использовать гидрохимические способы, а для бокситов, содержащих значительное количество кремния и железа, наиболее приемлемо щелочное спекание.

Из термических способов производства глинозема промышленное применение имеет способ спекания, основанный на получении алюмината натрия. В отличие от гидрохимического способа спекание можно применять практически для любого вида алюминиевого сырья. Однако, в промышленном масштабе его применяют в основном для переработки двух видов сырья – высококремнистого боксита и нефелина.

Сущность способа спекания заключается в образовании алюмината натрия при высокой температуре в результате взаимодействия в смеси алюминиевой руды, соды и известняка. Полученный при этом пористый спек выщелачивают водой. Раствор алюмината натрия после выщелачивания разлагают углекислым газом с выделением в осадок гидроксида алюминия, который для получения безводного глинозема подвергают кальцинации. Цель спекания – перевести содержащийся в руде алюминий в форму водорастворимого алюмината натрия и связать кремнезем в малорастворимые кальциевые силикаты.

По способу спекания можно перерабатывать сырье с высоким содержанием кремнезема. Чем выше содержание кремнезема в сырье, тем больше известняка добавляют в шихту.


ПРОИЗВОДСТВО ГЛИНОЗЕМА ПО СПОСОБУ СПЕКАНИЯ

Сущность способа спекания заключается в образовании алюмината натрия при высокой температуре в результате взаимодействия смеси алюминиевой руды, соды и известняка. Полученный при этом пористый спек выщелачивают водой. Раствор алюмината натрия после выщелачивания разлагают углекислым газом с выделением в осадок гидроксида алюминия, который для получениябезводного глинозема подвергают кальцинации.

Реакции, протекающие при спекании насыщенной боксито - содо - известковой шихты, могут быть представлены следующим образом:

Al2O3·H2O+Na2CO3=2NaAlO2+Co2+H2O

2O3·H2O+Na2CO3=2NaFeO2+CO2+H2O

Кремнезем сырья способен соединяться при спекании с содержащимися в шихте оксидом алюминия и щелочью в алюмосиликат натрия (Na2O·Al2O3·SiO2), что обуславливает при гидрохимической обработки спека потери оксида алюминия и щелочи. Поэтому в шихту добавляют известняк, который связывает кремнезем в нерастворимое соединение - двухкальциевый силикат (2CaO·SiO2):

CaCO3+SiO2=2CaO·SiO2+2CO2

Кроме того, происходит частичная диссоциация СаСО3 с образованием СаО.

По способу спекания можно перерабатывать сырье с высоким содержанием кремнезема. Чем выше содержание SiO2 в сырье, тем больше известняка добавляют в шихту.

Для низкокремнистых бокситов может быть применено спекание боксита с содой без добавки известняка. Независимо от содержания и минералогической формы кремнезема в сырье связывание кремнезема в двухкальциевый силикат позволяет перевести оксид алюминия, содержащийся в сырье, в растворимый алюминат натрия.

Дозировка шихты для процесса спекания должна осуществляться с учетом составных частей всех компонентов: основного сырья, известняка, свежей соды, оборотного раствора, топлива, белого шлама (алюмосиликата натрия), образующегося при обескремнивании, и пульпы, получающейся при промывке в скрубберах отходящих газов печей спекания.

Оптимальные температурные условия спекания определяются минералогическим и химическим составом сырьевых материалов и соотношением компонентов шихты.

Интенсивность и полнота взаимодействия реагирующих твердых веществ шихты зависит от степени равномерности смешивания этих веществ, крупности частиц шихты и температуры спекания.

При достижении температуры начала плавления шихты образуется жидкая фаза в количестве, достаточном для связывания и окускования материала, и получается пористый спек.

Спекание проводят при температурах 1200...1300 °С, что позволяет превратить практически весь оксид алюминия в алюминат натрия. В результате образуются кусковой пористый частично оплавленный спек темно-серого цвета, а также газы, содержащие 10... 12 % СО2, которые используют для карбонизации алюминатных растворов.

Спек после охлаждения дробят до крупности 6...8 мм и направляют на выщелачивание, которое производят водой и слабым оборотным раствором соды. Цель выщелачивания - перевод твердого алюмината натрия в раствор. Нерастворимый остаток (шлам) отделяют от алюминатного раствора и отправляют в отвал. Выщелачивание спека должно осуществляться в условиях, способствующих переходу в раствор алюмината натрия и разложению феррита натрия. А также в условиях, препятствующих протеканию реакций разложения двухкальциевого силиката с дальнейшим образованием нерастворимого алюмосиликата натрия.

В результате частичного разложения двухкальциевого силиката и образования растворимого силиката натрия в алюминатном растворе после выщелачивания содержится кремнезем в количестве соответствующем отношению по массе Аl2О3 к SiO2 (кремниевому модулю) в растворе, равному 30…40.

После обескремнивания пульпа, состоящая из раствора и белого шлама, проходит стадии сгущения и фильтрации. Белый шлам возвращают на приготовление исходной шихты а осветленный алюминатный раствор направляют на карбонизацию, т.е. разложение алюминатного раствора диоксидом углерода. Карбонизацию осуществляют пропусканием через раствор топочных газов содержащих СО..

В результате каустический модуль раствора понижается, что создает условия для гидролитического разложения алюмината натрия. Образовавшаяся при этом щелочь карбонизируется новыми порциями СО2, и разложение алюмината натрия продолжатся. Процесс карбонизации должен обеспечить получение крупнокристаллического гидроксида алюминия с минимальным содержанием примеси кремнезема и щелочей.


Конструкция вращающихся печей

Вращающиеся печи широко применяют для нагрева сыпучих материалов в различных отраслях промышленности.

Корпус печи представляет собой сварной металлический барабан диаметром до 5 м и длиной до 185 м, футерованный изнутри огнеупорным кирпичом. Барабан сваривают из листовой стали. Как правило, диаметр барабана по всей длине одинаков.

Футеровка барабана работает в тяжелых условиях, что связанно с периодическими перепадами температур на поверхности кладки, обусловленными вращением печи и пересыпанием находящегося в ней материала. Перепад температур при входе и выходе из-под слоя шихты составляют 150...200°С. В зоне спекания на футеровку сильное химическое и абразивное воздействие оказывает материал. В зоне сушки кладка подвержена значительному истиранию цепями или отбойными устройствами. Основным материалом для футеровки печей глиноземного производства служит шамот. Высокотемпературные зоны печи выкладывают из хромомагнезитового, магнезитового и периклазошпинелидного огнеупорного кирпича. Толщина футеровки составляет 230... 350 мм. Чтобы предотвратить разрушение футеровки при остановках печи, барабан должен вращаться до ее полного охлаждения. На наружной поверхности барабана закрепляют стальные опорные бандажи в виде неразрывных колец шириной 400... 800 мм. Каждый бандаж опирается на два ролика, вращающиеся во время работы печи. Ширина роликов обычно на 50...100 мм больше ширины бандажа. Опорные ролики установлены на массивных стальных плитах, укрепленных на железобетонных фундаментах таким образом, что барабан печи имеет небольшой уклон к горизонту, составляющий 1...3 град. Как правило, уклон задают в процентах от общей длины печи (2...4 %).

Барабан вращается вокруг своей оси со скоростью 0,6...2,0 об/мин, регулирование числа оборотов барабана производят специальным устройством.

Для остановки вращения печи в любом положении служит электромагнитный фрикционный тормоз, через обмотку которого во время работы печи постоянно пропускается ток. Когда подача тока прекращается, электромагнит выключается и отпускает колодки тормоза, которые и зажимают приводной вал.