Потери гидродинамического напора или давления определяются формулой Дарси-Вейсбаха.
Коэффициент местного сопротивления выбираем по табл.5 из Методического пособия по выполнению курсовых работ по дисциплинам "Гидравлика, гидравлические машины и гидропривод"
потери давления определяются как сумма потерь по длине и в местных сопротивлениях
Построение напорной, пьезометрической линий
Для наглядного представления гидравлических явлений в напорных трубопроводах, а также для некоторых расчетов строят напорную, пьезометрическую и геометрическую линии. Напорная линия графически представляет изменение полной удельной энергии жидкости направлении ее движения, пьезометрическая линия -потенциальной удельной энергии, а геометрическая -взаимное расположение живых сечений по вертикали.
Для построение напорной, пьезометрической линии используем данные расчетов:
Расчет ударного повышения давления
При мгновенном перекрытии живого сечения трубопровода в нем резко повышается давление, это явление прямого гидравлического удара, при постепенном перекрытии живого сечения трубопровода возникает не прямой гидравлический удар. Повышение давления при прямом гидравлическом ударе определяется формулой Жуковского:
,где Еж – модуль упругости жидкости,
Еn – модуль упругость материала,
δ - толщина стенки трубопровода
ρ =900 кг/м3;
υ =5 м/с;
Еж =1305 Па;
Еn =2·105·106 Па;
δ =0,002 м
Подбор оборудования
В моей гидросистеме работают следующие оборудования:
Насос
Расчетные данные | Справочные данные |
Q = 1 л/сP = 1,82 МПа | шестеренныйГ11-24Q = 1,166 л/сР = 2.5 МПачастота вращения, 1450 об/мин |
Насосами называются машины для создания напорного потока жидкой среды. Этот поток создается в результате силового воздействия на жидкость в рабочей камере насоса.
По характеру силового действия, различают насосы динамические и объемные. В динамическом насосе силовое воздействие на жидкость осуществляется в проточной камере, постоянно сообщающейся со входом и выходом насоса. В объемном насосе силовое воздействие происходит в рабочей камере, периодически изменяющей свой объем и попеременно сообщающейся со входом и выходом насоса.
К динамическим относятся:
1) лопастные: а) центробежные б) осевые
2) электромагнитные
3) насосы трения: а) вихревые б) шнековые в) дисковые г) струйные и др.
К объемным относятся:
1) возвратно поступательные: а) поршневые и плунжерные б) диафрагментальные
2) крыльчатые
3) роторные: а) роторно – вращательные б) роторно – поступательные
Шестеренный насос
Шестеренные насосы выполняются с шестернями внешнего и внутреннего зацепления. Наибольшее распространение имеют насосы с шестернями внешнего зацепления. На рис. 1 приведена схема такого насоса. Он состоит из двух одинаковых шестерен — ведущей 2 и ведомой 3, помещенных в плотно охватывающем их корпусе — статоре /. При вращении шестерен в направлении, указанном стрелками, жидкость, заполняющая впадины между зубьями, переносится из полости всасывания в полость нагнетания. Вследствие разности давлений (P2>P1) шестерни подвержены воздействию радиальных сил, которые могут привести к заклиниванию роторов. Для уравновешивания последних в корпусе насосов иногда устраивают разгрузочные каналы 4. Такие же каналы могут быть выполнены и в самих роторах.
Рис 1
Фильтр
Расчетные данные | Справочные данные |
Пропускная способностьQ = 1 л/с | пластинчатый0,2Г41 – 14Пропускная способностьQ = 1,2 л/сНаименьший размер задерживаемых частиц = 0,2, мм |
Фильтр – это отделитель твердых частиц, в котором очистка происходит при прохождении рабочей жидкости через фильтрующий элемент. В зависимости от конструкции фильтрующего элемента фильтры бывают: щелевые, в которых очистка происходит при прохождении рабочей жидкости через щели фильтрующего элемента; сетчатые, в которых очистка происходит при прохождении рабочей жидкости через ячейки сетки; пористые, в которых очистка происходит при прохождении рабочей жидкости через поры фильтрующего элемента, например через поры керамических, металлокерамических и бумажных элементов.
На рис. 2 показана схема щелевого (пластинчатого) фильтра типа Г41, 1 – пластины, 2 – вал, 3 - промежуточная пластина, 4 – ось, 5 – скребки.
Рис.2
Гидроцилиндр
Расчетные данные | Справочные данные |
Р = 0,6 МПа | Поршневой гидроцилиндр с двусторонним штоком |
Гидроцилиндры являются простейшими гидродвигателями, которые применяются в качестве исполнительных механизмов гидроприводов различных машин и механизмов с поступательным движением выходного звена. По принципу действия и конструкции гидроцилиндры весьма разнообразны, и применение того или иного типа гидроцилиндра диктуется конкретными условиями работы, назначением и конструкцией той машины, в которой он используется.
Поршневой гидроцилиндр с двусторонним штоком, в котором шток расположен по обе стороны поршня рис 3.
Гидроцилиндры с двусторонним штоком применяются в тех случаях, когда необходимо в обычной схеме подключения гидролинии получить одинаковое усилие и одинаковую скорость при движении штока в обоих направлениях. Однако такие гидроцилиндры увеличивают габариты машины, так как шток выходит по обе стороны корпуса, и более сложны в изготовлении, так как приходится выдерживать строгую концентричность (соосность) нескольких поверхностей: внутренней корпуса, внешней поршня и штока.
Рис 3
Гидрораспределитель
Расчетные данные | Справочные данные |
Q = 1 л/сP = 1,82 МПа | З74 – 14Qном = 1,2 л/сРном = 0,3 – 8 МПаПотери давления 0,2 МПаУтечки через зазоры 0,0009, л/с |
Гидрораспределитель – гидроаппарат, предназначенный для изменения направления потока рабочей жидкости в двух или более гидролиниях в результате внешнего управляющего воздействия.
Гидрораспределитель типа З74 – 14, предназначенного для реверсирования движения рабочих органов станков или других машин с помощью ручного управления. При среднем фиксированном положении обе полости гидродвигателя А и Б и напорная линия соединены с баком. В левом или правом фиксированном положении одна из полостей отсекается от напорной линии и соединяется со сливом, а другая отсекается от слива и соединяется с напорной линией. Гидрораспределители работают на минеральных маслах вязкостью 10 – 60 сСт при температуре до 50 С.
Рис 4
Дроссель регулируемый
Расчетные данные | Справочные данные |
Q = 1 л/сP = 1,82 МПа | Г77 – 3Qном = 1,2 л/сРном = 12,5 МПа |
Гидродроссель – это регулирующий гидроаппарат неклапанного действия, представляющий специальное местное гидравлическое сопротивление, предназначенное для снижения давления в потоке рабочей жидкости, проходящей через него.
Для регулирования скорости перемещения рабочих органов станков и других машин путем изменения расхода рабочей жидкости используют регулируемые гидродроссели двух типов: крановые и золотниковые. На рис. 5 представлена схема кранового дросселя типа Г77 – 3. 1 – втулка, 2 – пробка, 3 – рукоятка, А Б В – отверстия.
Рис. 5
Клапан предохранительный
Расчетные данные | Справочные данные |
Q = 1 л/сP = 1,82 МПа | Г77 – 24Qном = 1,2 л/сРном = до 20 МПа |
Гидроклапаном называется гидроаппарат, в котором степень открытия проходного сечения (положение запорно-регулирующего органа) изменяется под воздействием напора рабочей жидкости, проходящей через него, Гидроклапаны бывают регулирующие и направляющие. К регулирующим в первую очередь относятся клапаны давления, предназначенные для регулирования давления в потоке рабочей жидкости.
Предохранительный клапан предохраняет систему от давления, превышающего допустимое.
Принцип действия всех напорных клапанов одинаков и основан на уравновешивании силы давления рабочей жидкости, действующей на клапан, усилием пружины или другим противодействующим устройством, рис 6.
Рис 6
Список использованной литературы
1. Вильнер Я.М., Ковалев Я.Т., Некрасов Б.Б. Справочное пособие по гидравлике, гидромашинам и гидроприводам. – Минск, 1976.
2. Полякова Л.Е., Ямпилов С.С., Блекус В.Г., Норбоева Л.К. Методическое пособие по выполнению курсовых проектов и работ по дисциплинам «Гидравлика, гидравлические машины и гидропривод» и задания. – Улан – Удэ, 2006.