Условие соблюдается.
Определяем напряжения изгиба:
σи=Ми/W;
где W – момент сопротивлению изгибу. По [1,табл.22.1]:
мм3σи=627000/7611=53,7Н/мм2.
При симметричном цикле его амплитуда равна:
σа= σи =53,7Н/мм2.
Определяем напряжения кручения:
τк=Т3-3/Wк;
где Wк – момент сопротивлению кручению. По [1,табл.22.1]:
мм3τк=338000/16557=13,2Н/мм2.
При отнулевом цикле касательных напряжений амплитуда цикла равна:
τа= τк /2=13,2/2=6,6 Н/мм2.
Согласно примечанию к табл. 0.2 [3] в расчет принимаем концентрацию напряжений от посадки зубчатого колеса, для которой по табл.0.5 [3] (интерполируя) Кσ/Кν=3,9; Кτ/Кd=2,8.
По табл. 0.3…0.4 [3]: КF=1,0 – для шлифованной посадочной поверхности; Кν=1,0 – поверхность вала не упрочняется.
Определяем коэффициенты концентрации напряжении вала:
(Кσ)D=( Кσ/Кν+ КF-1)/ Кν=(3,9+1-1)/1=3,9;
(Кτ)D=( Кτ/Кν+ КF-1)/ Кν=(2,8+1-1)/1=2,8.
Определяем пределы выносливости вала:
(σ-1)D=σ-1/(Кσ)D=370/3,9=94,9 Н/мм2;
(τ-1)D=τ-1/(Кτ)D=200/2,8=71,4 Н/мм2.
Определяем коэффициенты запаса прочности:
sσ=(σ-1)D/ σа=94,9/53,7=1,8;
sτ=(τ-1)D/ τа=71,4/6,6=10,8.
Определяем расчетный коэффициент запаса по нормальным и касательным напряжениям:
Сопротивление усталости вала в сечении 3-3 обеспечивается, расчет вала на жесткость не проводим.
4.3 Расчет ведомого вала редуктора
Исходные данные выбираем из табл.1,3 с округлением до целых чисел:
Схема усилий действующих на валы редуктора представлена на рис.3
Ft4= 9592Н;
Fr4=4938Н;
d4=267мм;
Т4=1964Н;
b4=82мм;
Назначаем материал вала. Принимаем сталь 40Х, для которой [1, табл.8.4] σв=730Н/мм2;
Н/мм2; Н/мм2; Н/мм2.Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение
где [τк]=(20…25)Мпа [1,c.161]
Принимаем [τк]=20Мпа.
; мм.Принимаем окончательно с учетом стандартного ряда размеров Rа40:
мм.Намечаем приближенную конструкцию ведомого вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.
Рис.7 Приближенная конструкция ведомого вала
мм; мм – диаметр под уплотнение; мм – диаметр под подшипник; мм – диаметр под колесо; мм – диаметр буртика.Учитывая, что осевых нагрузок на валу нет назначаем подшипники шариковые радиальные однорядные средней серии по
мм подшипник №318, у которого Dп=190мм; Вп=43мм [1,c.394, табл.П3].Из расчета промежуточного вала принимаем l=326мм, остальные размеры:
W=65мм;
lм=105мм (длина полумуфты МУВП на момент 2000Нм;
l1=35мм.
Определим размеры для расчетов:
l/2=163мм;
с=W/2+ l1+ lм/2=170мм – расстояние от оси полумуфты до оси подшипника.
Проводим расчет ведомого вала на изгиб с кручением.
Заменяем вал балкой на опорах в местах подшипников.
Определяем реакции в подшипниках в вертикальной плоскости.
-RЕy·0,326+Fr4·0,163=0
RЕy= 4938·0,163/ 0,326;
RЕy= RСy=2469Н
Рис.7 Эпюры изгибающих и крутящих моментов ведомого вала
Назначаем характерные точки 1,2 и 3 и определяем в них изгибающие моменты:
М1у=0;
М2у= -RСy·0,168;
М2у =-400Нм2;
М3у=0;
Строим эпюру изгибающих моментов Му, Нм2 (рис.8)
Рассматриваем горизонтальную плоскость (ось х)
1åmЕх=0;
-RСх·0,336+ Ft·a=0;
RСх=(5540·0,476+9592·0,168)/0,11;
RСх=38622Н
2åmСх=0;
-RЕх·0,336+Ft·0,168+FМ2·0,140= 0;
RЕх=(9592×0,0,168+5540×0,14)/0,336;
RЕх=7104Н
Назначаем характерные точки 1,2,3 и 4 и определяем в них изгибающие моменты:
М1х=0;
М2х= - FМ2·0,14
М2х=-7104·0,14;
М2х=994Нм;
М3х=-RСх ·0,168;
М3х=38622·0,168;
М3х=6488Нм
М4х=0;
Строим эпюру изгибающих моментов Мх.
Крутящий момент
Т1-1= Т2-2= Т3-3= T1=1964Нм;
T4-4=0.
Исходные данные выбираем из табл.1,3 с округлением до целых чисел:
Схема усилий действующих на валы редуктора представлена на рис.3
Ft1= 2906Н;
Fr1=1086Н;
Fа1=250,7Н;
d1=267мм;
Т1=80,7Н;
b1=54мм;
Назначаем материал вала. Принимаем сталь 40Х, для которой [1, табл.8.4] σв=730Н/мм2;
Н/мм2; Н/мм2; Н/мм2.Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение
где [τк]=(20…25)Мпа [1,c.161]
Принимаем [τк]=20Мпа.
; мм.Диаметр выходного конца двигателя по произведенному расчету в п.1равен 38мм.
Принимаем окончательно с учетом стандартного ряда размеров Rа40:
мм.Намечаем приближенную конструкцию ведущего вала редуктора (рис.9), с учетом того, что уже известны межосевые расстояния между подшипниками и между шестернями.
Рис.9 Приближенная конструкция ведущего вала
dв=32мм;
Lст1=в1=54мм;
х=8мм;
W=50мм;
r=2,5мм;
f=1,2мм;
dу=35мм-ближайшее большее стандартное значение диаметра под уплотнение
dп≥ dу принимаем ближайшее большее стандартное значение диаметра под подшипник dп =40мм;
d3= dп+2r=50мм;
Примем dст =d1=50мм, облегчение прохода шестерни через диметр d1 при сборке обеспечим заданием допуска d10(-0,08/-018) на размер d1.
dст= d3+5f=63мм;
l=2Lст1+Lст3+4х+W=326мм.
lм =58мм – принимаем для муфты МУВП с диметрами отверстий 32 и 36 мм;
l1=52мм – принимаем предварительно.
Так как осевые силы от двух косозубых колес взаимно компенсируются, их можно не учитывать в расчетах, поэтому предварительно назначаем подшипники шариковые радиальные однорядные средней серии по dп =40мм подшипник №308, у которого Dп=90мм; Вп=23мм [1,c.394, табл.П3].
Производим расчет ведущего вала на изгиб с кручением.
Заменяем вал балкой на опорах в местах подшипников.
Рассматриваем вертикальную плоскость (ось у)
Определяем реакции в подшипниках в вертикальной плоскости.
1åmАу=0
RBy·0,172-Fr·0,06-Fr·0,212 =0
RBy=1086·0,384 /0,172;
RBy=2224Н
RАy = RBy=2224Н
Назначаем характерные точки 1,2,3 и 4 и определяем в них изгибающие моменты:
М1у=0;
М2у= RАy·а;
М2у=2224·0,06;
М2у =133,5Нм;
М3у= М2у =133,5Нм;
М4у=0;
Строим эпюру изгибающих моментов Му, Нм (рис.10)
Рассматриваем горизонтальную плоскость (ось х)
1åmАх=0;
FМ1·0,327-RВх·0,272-Ft·0,06-Ft·0,212=0;
RВх=(2906(0,272+0,212)-718·0,327)/0,272;
RВх»1019Н
2åmВх=0;
RАх·0,272-Ft·0,212-Ft·0,06+FМ1·0,055= 0;
RАх=(2906(0,212+0,06)-718·0,055)/0,272;
RАх»395Н
Рис.10 Эпюры изгибающих и крутящих моментов ведущего вала
Назначаем характерные точки 1,2, 3, 4, 5 и определяем в них изгибающие моменты:
М1х=0;
М2х= -RАх·0,06;
М2х=-395·0,06;
М2х=-23,7Нм;
М3х= -RБх·0,06;
М3х= -1019·0,06=-61,1Нм;