Смекни!
smekni.com

Расчет камеры для холодильной обработки мяса (стр. 6 из 8)

GA=V·η3·ρa (2.23)

GA= 0,26∙0,7∙0,66 = 0,12 т.

Определяем металлоемкость охлаждающих батарей

GM= Gnp + Gnoт = L·mТ, (2.24)

гдеGM , Gnp , Gnoт – соответственно металлоемкость всех батарей, кг;

L – суммарная длина всех труб батарей, м;

mТ - масса 1 м трубы охлаждающей батареи, кг/м (для гладкостенной трубы с продольным звездообразным оребрением Dн= 57×3,5 мм mт=8.3 кг/м).

L=Lтр∙n1∙n2 ; (2.25)

L=3,68∙9∙4=132,48 м.

Таким образом,

GM= 132,48·8,3 = 1100 кг.


2.5 Расчет необходимого количества воздухоохладителей коридора

Определить необходимую площадь теплопередающей поверхности подвесных воздухоохладителей типа ВОП , устанавливаемых в разгрузочном коридоре холодильника мясокомбината , и вместимость воздухоохладителей по холодильному агенту, если тепловая нагрузка Qоб = 32 кВт, коэффициент теплопередачи воздухоохладителей k = 12 Вт/(м2·К).

Принимаем разность Δt = 9°Cи определяем необходимую площадь теплопередающей поверхности

(2.26)

Так как площадь теплопередачи F0 одного воздухоохладителя ВОП-150 составляет 150 м2, устанавливаем два воздухоохладителя ВОП-150 или их импортные аналоги . Вместимость воздухоохладителей по холодильному агенту определяем по формуле

Ga=Va1×nво×ρa , (2.27)

Ga=Va1×nво×ρa = 30×4×0,66 = 79,2 кг ,

где Va1 = 30 л- вместимость по холодильному агенту одного воздухоохладителя.

2.6 Расчет массового расхода приточного воздуха в камере замораживания

Необходимо рассчитать массовый расход приточного воздуха и осевую скорость его движения в указанной зоне для камеры замораживания мясных полутуш, если воздух подается через сопла, выполненные в ложном потолке , расположенном ниже балок подвесных путей (рисунок 2.5) .

Задаемся следующими размерами: ширина сопла bc=2 b0 = 0,1 м ; длина сопла lс = 0,1 м; расстояние между соплами lc´=0,5 м.

а — расположение сопл в ложном потолке (ниже балок подвесных путей); б — структура струи; в — размеры сопла

Рисунок 2.5 - Схема подачи воздуха через сопла ложного потолка

Рассчитываем расстояние h0от начального сечения до полюса воздушной струи:

ho=bo·0,41/ат ; (2.28)

где bo = 0,05 м – внутренний радиус сопла;

ат = 0,4 - коэффициент турбулентности для сопла со встроенным турбулизатором при полученном отношении bc/lc=0.1/0.1= 1:

ho= 0,4 - bo·0,41/ат = 0,05·0,41/0,4 = 0,051 м ;

Тангенс угла расширения струи

tg α = bо/ hо ; (2.29)

tg α = aT / 0,41=0,4/0,41 = 0,97

При расположении ложного потолка ниже балок подвесных путей расстояние х от ложного потолка до плоскости размещения бедренных частей мясных полутуш равно 1 м.

Ширина воздушной струи на расстоянии х от сопла

h = 2·(x+h0)·tgα (2.30)

где х =1м – расстояние от ложного потолка до плоскости размещения бедренных частей мясных полутуш

h = 2·( l+0;051 )·0,97 = 1.9 м

При h = 1,9 м вся поверхность полутуши будет находиться в зоне обдува, так как ширина полутуши в наиболее утолщенной (бедренной) части значительно меньше, чем ширина воздушной струи.

Определяем осевую скорость движения воздушной струи:

на выходе из сопла

(2.31)

где ωрек=3 м/с - рекомендуемая скорость движения воздуха на уровне размещения бедренных частей полутуш;

м / c

на расстоянии х = 1 м


; (2.32)

м/с

Для определения расхода приточного воздуха предварительно определяем рабочую длину подвесных путей (по чертежам):

L п.п = 16×6×2 = 192 м

Масимально возможная масса продукта, загружаемого в камеру

Gпр = L п.п × qi (2.33)

где qi=250 кг/м— норма загрузки 1 м подвесного пути;

Gпр = 192×250 = 48 т

Объемный расход приточного воздуха

VB = bC × lC × nC × ω0 (2.34)

где nС – количество сопел , шт.

(2.35)

где lс = 0,1 м - длина сопла;

lc´=0,5 м - расстояние между соплами;

шт

VB = 0,1×0,1×320×10.6 = 33.9 м3/с .

Объемный расход воздуха, движущегося на расстоянии x =1 м


(2.36)

м3

При известных значениях VBи VB массовый расход воздуха составляет

GB= 33,9 ×1,496 = 50,71 кг/с;

где 1,496 —плотность воздуха при температуре, равной - 37°С, кг/м3 .

Принимаем, что температура приточного воздуха, выходящего из щелей ложного потолка, на 2°С ниже температуры воздуха на уровне бедренных частей полутуш, тогда

GB= 118 × 1,484 = 175 кг/с

где 1,484 кг/м3 - плотность воздуха при температуре, равной - 35 °С,

2.7 Расчет воздушной завесы для двери холодильной камеры

Проведем расчет воздушной завесы для двери камеры хранения мороженых туш, выходящей в коридор. Температура воздуха в камере tкам=-20°С (плотность воздуха ρв = 1,35 кг/м3), температура воздуха в коридоре tкор = 0°C (плотность воздуха ρв =1,29 кг/м3) . Размер дверного проема - 1,7×2,2 м. Воздух для создания завесы забирается из коридора. Угол между направлением оси струи воздуха, выходящей из плоского сопла завесы, и плоскостью двери принимаем равным 30°.

Отношение площади отверстия сопла завесы к площади дверного проема обычно находится в соотношении

(2.37)

Так как завесы холодильных камер не несут тепловой нагрузки, то можно для их дверей брать минимальное отношение, т. е.

.

Для максимального уменьшения количества холодного воздуха, вытекающего из камеры через открытую дверь при действии завесы, целесообразно принять отношение

(2.38)

Так как Vпр =Vз +Vк т. е. через дверь проходит весь воздух, выходящий из щелевого сопла V3, и воздух, прорываюшийся из камеры Vк, то равенство q=1 означает, что VК , т.е.количество воздуха, прорывающегося из камеры, будет близко к нулю.

Коэффициент расхода воздуха через дверь при работе завесы по уравнению Эльтермана :

(2.39)

где D – коэффициент , определяемый по формуле

(2.40)

гдеq - отношение количества воздуха , подаваемого в завесу , к количеству воздуха , проходящего через двери;

μ0 - коэффициент расхода воздуха через дверной проем при бездействии завесы (для дверей холодильных камер μ0=0,8 );

FД - площадь дверного проема;

Fщплощадь щели, через которую выходит струя воздушной завесы;

α – угол между направлением выхода струи завесы и плоскостью дверного проема;

γз – плотность воздуха , подаваемого в завесу;

γсм – плотность смеси воздуха камеры и завесы;

В связи с тем что воздух из камеры протекает через дверь в малом количестве, можно с достаточной для расчета точностью считать

γз= γсм= γн (2.41)

Таким образом

Количество воздуха, которое будет проходить через дверь при работе завесы, можно найти, предполагая, что высота нейтральной зоны hн.з. равна высоте дверного проема Н:

(2.42)

где b = 1.7 м – ширина дверного проема;

H = 2,2 м – высота дверного проема;

μ = 0,176 – коэффициент расхода воздуха через дверной проем;

g = 9.81 м/с2 – ускорение свободного падения;

м3

Поскольку VПР =VЗ, то через щелевое сопло должно проходить также VЗ = 0,62 м3/сек воздуха.

Площадь отверстия щелевого сопла

(2.43)

м2

Если считать длину щелевого сопла равной ширине дверного проема 1,7м, то ширина сопла, т.е lщ = b =1,7 м , то ширина сопла

(2.44)

м

Скорость выхода воздуха из сопла

(2.45)