Смекни!
smekni.com

Расчет кислородно-конвертерной плавки (стр. 1 из 5)

Оглавление

1. Расчет плавки при переделе обычных чугунов в кислородных конвертерах

1.1 Основные задачи, решаемые при производстве стали

1.2 Перспективы развития кислородно-конвертерного производства.

2. Расчет плавки при переделе обычного чугуна в кислородном конвертере

2.1 Исходные данные

2.2 Материалы из малозначащих источников, участвующие в плавке

2.3 Расчет общего количества образующегося шлака

2.4 Максимально возможный расход металлического лома.

2.5 Фактический расход лома с учетом дополнительного охладителя.

2.6 Необходимый расход извести

2.7 Уточнение количества шлака

2.8 Предварительный расчет количества газа

2.9 Расчет выхода жидкого металла

2.10 Потери металла с пылью (угар)

2.11 Остаточное содержание примесей в металле

2.12 Расчет количеств удаляемых примесей из металла

2.13 Расход дутья и продолжительности продувки

2.14 Масса металла в конце продувки

2.15 Материальный баланс

2.16 Температура металла в конце продувки

2.17 Раскисление металла

2.18 Масса и состав металла после раскисления.

2.19 Расход металла на всю плавку

Список литературы


1 Расчет плавки при переделе обычных чугунов в кислородных

конвертерах

1.1 Основные задачи, решаемые при производстве стали

Целью плавки является получение заданной массы жидкой стали с требуемым химическим составом и температурой при минимальных затратах материально-сырьевых, топливно-энергетических и трудовых ресурсов.

Получение заданного химического состава связано с протеканием сложных физико-химических процессов, большинство из которых трудно управляемы, а некоторые не управляемы вообще. При этом необходимо учитывать возможные пределы параметров протекания как управляемых, так и неуправляемых частных процессов.

Поскольку выплавка стали производится в одном агрегате, то с целью снижения ресурсоемкости плавки стремятся к максимальному совмещению подпроцессов во времени.

Однако полное совмещение всех частных процессов исключено по причине их противоречивости (окислительный шлак имеет малую серо-поглотительную способность), что не позволяет создать оптимальные условия рафинирования всех примесей.

Поэтому, в связи с невозможностью проведения в одном рабочем пространстве всего комплекса технологических операций, связанных с выплавкой качественной стали, часть операций выносится в другое рабочее пространство, которым служит ковш.

Все физико-химические процессы, связанные с получением заданного содержания примесей в готовой жидкой стали и поддающиеся управлению, делятся на две группы:

- рафинирование металла;

- раскисление - легирование металла.

Оба процесса проводят, как правило, последовательно. Рафинирование металла, которое является более сложной задачей, обычно проводят в несколько стадий:

1. Предварительное рафинирование, которое сводится к удалению из чугуна серы, фосфора и других примесей. Проводят его до подачи чугуна в сталеплавильный агрегат, как правило, - в чугуновозных ковшах.

2. Основное рафинирование, которое проводится в сталеплавильном агрегате за счет окисления примесей кислородом дутья, газовой фазы и твердых окислителей.

3. Дополнительное рафинирование, которое проводят обычно в сталеразливочном ковше путем обработки металла ТШС, в основном для удаления серы.

4. Дегазация металла с целью удаления водорода, кислорода и азота. Её проводят методом вакуумной обработки или продувки нейтральным газом в сталеразливочном ковше.

Первая стадия по предварительному рафинированию чугуна сводится, главным образом, к обработке чугуна кальцинированной и каустической содой, магнием и жидким синтетическим шлаком в чугуновозных ковшах, с целью его десульфурации.

Вторая стадия – основное (окислительное) рафинирование, которое при производстве стали массового потребления обычно является единственным видом рафинирования. При его использованию поддаются управлению, прежде всего, обезуглероживание, дефосфорация и десульфурация. Кроме того, основная цель в управлении плавкой стоит в обеспечении синхронного протекания процессов окислительного рафинирования и нагрева металла, т.е. оба эти процесса должны заканчиваться одновременно.

Процесс обезуглероживания металла регулируется изменением расхода кислорода, поступающего в ванну. При этом характерно, что реакция окисления углерода может быть как явно экзотермической, если она протекает за счет газообразного кислорода, так и резко эндотермической, если она протекает за счет кислорода твердых окислителей.

Этот факт используется для регулирования температуры ванны при синхронизации процессов обезуглероживания и нагрева ванны.

Процессы дефосфорации и десульфурации осуществляются регулированием шлакового режима плавки, т.е. изменением химического состава и количества шлака.

Химический состав и количество шлака зависят, в основном, от количества кремния в чугуне и от расхода шлакообразующих материалов.

Поэтому расчеты, связанные с управлением шлаковым режимом (десульфурация и дефосфорация) сводятся к определению количества шлака и соответственного расхода флюсов.

Раскисление - легирование металла является обязательным и заключительным этапом плавки, обеспечивающим получение заданного содержания примесей в готовой стали. Поэтому этот этап является весьма ответственным, поскольку определяет качество литого и готового металла.

1.2 Перспективы развития кислородно-конвертерного

производства

В 1952 году на Новотульском металлургическом заводе была создана экспериментальная база ЦНИИ чермета с 10-и тонным конвертером, на котором отрабатывали технологические режимы для промышленной реализации конвертерного процесса.

22 сентября 1956 года впервые в стране была освоена промышленная технология конвертерного производства в реконструированном бессемеровском цехе Днепропетровского металлургического завода имени Петровского. Так был завершен первый этап многолетнего поиска, упорного и настойчивого труда ученных в союзе с производством.

В декабре 1957 года на базе переоборудованных бессемеровских конвертеров криворожского металлургического завода был введен в эксплуатацию цех с четырьмя съемными 50-и тонными конвертерами.

5 июня 1963 года на нижнетагильском металлургическом комбинате был введен в действие первый классический конвертерный цех с тремя 100 тонными конвертерами на обычном передельном чугуне. В цехе впервые в стране была разработана и внедрена трехсопловая кислородная фурма, позволившая оптимизировать технологический режим плавки. В 1965 году цех был переведен на передел ванадиевого чугуна по уникальной в мировой практике технологии дуплекс-процессом с получением на первой стадии кондиционного ванадиевого шлака и на второй стадии – чистой природно-легированной стали из углеродистого полупродукта. Этот цех послужил головным образцом в поколении цехов со 100-130 тонными конвертерами и первой школы подготовки специалистов для последующих конвертерных цехов.

В 1964-1965 годах были введены в строй конвертерный цех на Мариупольском комбинате имени Ильича, конвертерный цех №2 на комбинате Криворожсталь и на Енакиевском металлургическом комбинате.

Качественно новый этап в развитии мирового конвертерного производства ознаменовало введение в действие впервые в мировой практике кислородно-конвертерного комплекса с 3 на 110 тонными конвертерами в сочетании с установкой МНЛЗ на Новолипецком металлургическом комбинате 18 марта 1966 года. Комплекс был введен в действие совместными усилиями советских и австрийских специалистов. Освоение этого комплекса положило начало новой эпохе в развитии всего мирового сталеплавления, дальнейшее развитие которого пошло по пути создания крупных сталеплавильных комплексов с конвертерами и установками МНЛЗ на основе уже разработанных и внедренных в конвертерном цехе НЛМК теоретических и практических положений.

В дальнейшем с целью повышения производительности цеха и совершенствования технологии реконструировали газоотводящий тракт для проведения процесса без дожигания отходящих газов; 110 тонные конвертера заменили отечественными 160 тонными; увеличили емкость разливочных ковшей и грузоподъемность кранов. Впервые в мире создана и внедрена внепечная обработка стали; разработаны и внедрены бесстопорная разливка, рациональная конструкция футеровки с учетом дифференцированного характера ее износа и технология факельного торкретирования футеровки конвертера в вертикальном положении.

6 ноября 1980 года введен в действие цех с 400 тонными конвертерами и МНЛЗ на Череповецком металлургическом комбинате, причем впервые в мировой практике с использованием низкомарганцовистого чугуна (0,2% Mn). Разработанная в цехе ресурсосберегающая технология передела такого чугуна включает динамический режим регулирования параметров кислородной продувки в соответствии с интенсивностью обезуглероживания и условиями раннего шлакообразования. В цехе разработана и освоена комплексная технология выплавки с внепечной обработкой и непрерывной разливкой качественных сталей широкого сортамента.

На базе разработанных технологических основ также с использованием низкомарганцовистого чугуна 2 ноября 1990 года был введен ныне самый современный конвертерный цех на Магнитогорском металлургическом комбинате.

Впоследствии ведущие металлургические предприятия в условиях жесткой рыночной экономики объединили усилия, разработали и внедрили комплекс технологических мероприятий и нового оборудования для увеличения производительности цехов до 8 млн. тонн в год, коренного улучшения качества металла, включая освоение новых высококачественных сталей.

Увеличение производительности цехов достигнуто в результате ввода новых мощностей (третьего 400 тонного конвертера на ММК), повышения эффективности и надежности работы оборудования (приводы поворота конвертеров, опоры подшипников, панели котла-охладителя, трубы Вентури газоочистки с регулируемым зазором), организации ремонта и монтажа в короткие сроки (за 4-5 суток) крупнотоннажного оборудования конвертеров без сокращения объемов производства в цехе; внедрение технологии плавки на магнезиальных шлаках с наращиванием шлакового гарнисажа, повышающего стойкость футеровки до 2800-4500 плавок; введения системы АСУТП плавки с использованием измерительного зонда, обеспечивающей сокращение плавки на 3 минуты; в непрерывной разливке – внедрение методики контроля состояния оборудования и прогнозирования дефектных участков роликового полотна, что позволяет сократить простои МНЛЗ на проведение плановых ремонтов; применение гранулированных шлакообразующих смесей, обеспечивающих ослабления усилия вытягивания и увеличения стойкости стенок кристаллизатора. Выполненный комплекс работ позволил увеличить годовой объем выплавки конвертерной стали с 4.81 млн. тонн в 1996 году до 7.31 млн. тонн в 1999 году в ОАО ММК и с 4.8 млн. тонн в 1996 году до 7.35 млн. тонн в 1999 году в ОАО «Северсталь», повысить стойкость футеровки конвертеров до 2500 плавок в ОАО ММК и до 4500 плавок в ОАО «Северсталь», что считается лучшими показателями в России.