Смекни!
smekni.com

Расчет кожухотрубчатого двухходового воздухоподогревателя парового котла (стр. 2 из 5)

Воздухоподогреватели [1]

Воздухоподогреватель - теплообменный аппарат для нагревания проходящего через него воздуха. Его широко применяют в котельных установках тепловых электростанций и промышленных предприятиях, в печных агрегатах промышленности (например, металлургической, нефтеперерабатывающей), в системах воздушного отопления, приточной вентиляции и кондиционирования воздуха.

В качестве теплоносителя используют горячие газообразные продукты сгорания (в котельных и печных установках), водяной пар, горячую воду или электроэнергию (в системах отопления и вентиляции).

По принципу действия воздухоподогреватели разделяют на рекуперативные и регенеративные. В рекуперативных воздухоподогревателях теплообмен между теплоносителем и нагреваемым воздухом происходит непрерывно через разделяющие их стенки поверхностей нагрева, в регенеративных - осуществляется попеременно нагреванием и охлаждением насадок (металлических или керамических) неподвижных или вращающихся поверхностей нагрева воздухоподогревателя. На тепловых электростанциях применяются главным образом трубчатые (стальные и чугунные) рекуперативные воздухоподогреватели, реже - вращающиеся регенеративные. В металлургической промышленности широко распространены регенеративные Воздухоподогреватели периодического действия с керамической насадкой. Современные металлические воздухоподогреватели позволяют нагревать воздух до 450-600°С, воздухоподогреватели с керамической насадкой - до 900-1200°С.

Рис. 2 - Схема воздухоподогревателя


2. Составление модели расчета воздухоподогревателя

В данном разделе рассматривается формулировка задачи для расчета кожухотрубчатого двухходового воздухоподогревателя парового котла; представляются исходные данные и необходимые расчетные формулы.

2.1 Содержательная формулировка задачи

Задачей расчета теплообменного аппарата является определение основных размеров аппаратов и выбор их общей компоновки. Здесь рассматривается определение диаметра корпуса аппарата, количества и длины трубок, выбор размещения трубок в трубных плитах и расположение перегородок в трубном и межтрубном пространствах, определение диаметра патрубков для рабочих сред.

2.2 Исходные данные

Исходные данные к проекту: Дымовые газы(13% СО

,11% Н
О),в количестве 19,6 кг/с движутся по стальным трубам диаметром 53/50 мм со скоростью 14 м/с.Температура газов на входе в воздухоподогреватель - 380
.Воздух в количестве 21.5 кг/сек нагревается от 30
до 260
и движется поперёк трубного пучка со скоростью 8 м/с.Трубы расположены в шахматном порядке.

2.3 Расчетные формулы

Ниже подробно рассмотрены основные расчетные формулы для решения поставленной выше задачи.


2.3.1 Расчет проточной части трубного пространства

Основную группу теплообменных аппаратов, применяемых в промышленности, составляют поверхностные теплообменники, в которых тепло от горячего теплоносителя передается холодному теплоносителю через разделяющую их стенку.

Так как имеет место сложный теплообмен излучением и конвекцией, то основное уравнение теплопередачи будет иметь вид:

(1)

где Q– тепловой поток (расход передаваемой теплоты), Вт,

K– суммарный коэффициент теплопередачи, Вт/(м2·К),

F - площадь поверхности теплопередачи, м2,

Δtср– средняя разность температур горячего и холодного теплоносителя, К.

Суммарный коэффициент теплоотдачи определяется следующим образом:

(2)

Коэффициент теплоотдачи для воды, передаваемой тепло конвекцией, равен:

(3)

где Nu – критерий Нуссельта, характеризующий интенсивность перехода тепла на границе поток – стенка;

λ – коэффициент теплопроводности теплоносителя;

dдиаметр трубки.

Коэффициент Нуссельта для воды (при Re > 10000) найдем из соотношения:

(4)

где Re – критерий Рейнольдса, характеризующий соотношение сил инерции и трения в потоке:

(5)

Prи Prст– критерий Прандтля, характеризующий отношение вязкостных и температуропроводных свойств теплоносителя и стенки трубопровода.

Коэффициент теплоотдачи для дымовых газов, передаваемых тепло излучением, равен:

(6)

где

= 5,67 Вт / м2·К4 - коэффициент излучения абсолютно черного тела,

ε’ – степень черноты поверхности теплообменника;

εг– степень черноты дымовых газов;

TгиTв – средние температуры по Кельвину газов и воды соответственно.

Степень черноты дымовых газов найдем по соотношению [3]:


(7)

где

- степени черноты углекислого газа и паров воды соответственно. Эти величины определяются по справочникам с учетом парциального давления газа и средней длины пути луча, который определяется по формуле:

(8)

где dн и dвнаружный и внутреннийдиаметры трубки соответственно;

s1 иs2 – шаги размещения трубок поперек и вдоль тока среды соответственно.

Степень черноты поверхности теплообменника равна

(9)

где

- степень черноты стенки трубки.

Термическое сопротивление стальной стенки и загрязнений равно:

(10)

где rзагр1 иrзагр2 – тепловая проводимость загрязнений стенок;

δ – толщина стенки;

λст – коэффициент теплопроводности стенки.

Тогда коэффициент теплопередачи будет равен:


(11)

Средняя разность температурΔtсропределяется следующим образом [2]:

(12)

гдеΔtб иΔtм – большая и меньшая разности температур на концах теплообменника соответственно.

Если отношение

, то с достаточной точностью вместо уравнения (12) можно применять следующее уравнение:

(13)

Следует отметить, что из уравнения (12) вытекает: еслиΔtб =0 илиΔtм =0, то иΔtср =0; еслиΔtб = Δtм, тоΔtср = Δtб = Δtм.