Смекни!
smekni.com

Расчет кожухотрубчатого двухходового воздухоподогревателя парового котла (стр. 3 из 5)

Если температура одного из теплоносителей в процессе теплопередачи не меняется вдоль поверхности (конденсация насыщенного пара, кипение жидкости), то среднюю разность температурΔtсртакже определяют по уравнениям (12) и (13).

Формулы (12) и (13) применимы при условии, что в теплообменнике значение коэффициента теплопередачи К и произведение массового расхода на удельную теплоемкость G·с для каждого из теплоносителей можно считать постоянным вдоль всей поверхности теплообмена.

В тех случаях, когда вдоль поверхности теплообмена значительно меняется величина коэффициента теплопередачи К (или произведение массового расхода на удельную теплоемкость G·с), применение средней логарифмической разности температур [уравнение (12)] становится недопустимым. В этих случаях дифференциальное уравнение теплопередачи решают методом графического интегрирования.

Среднюю температуру воды найдем по формуле:

(14)

где tв начи tв кон - начальная и конечная температуры воды соответственно.

Среднюю температуру дымовых газов найдем по формуле:

(15)

Средний расход тепла, передаваемого от дымовых газов к воде, найдем по формуле:

(16)

где Gв- весовой расход воды в теплообменнике;

cв– средняя удельная теплоемкость воды;

tв начи tв кон - начальная и конечная температуры воды соответственно.

Площадь поверхности теплообмена аппарата находится из соотношения (1):

(17)

Расчетная длина трубок определяется по выражению:

(18)

Из уравнения непрерывности потока:

(19)

легко определяется площадь сечения трубок одного хода:

(20)

где G – весовой расход рабочей среды, кг / с;

w- скорость движения, м / с;

γ– удельный вес среды, кг / м3.

Площадь сечения определяется также соотношением

откуда находим количество трубок одного змеевика

(21)

где dв– внутренний диаметр трубок.

Если по формуле (17) длина трубок окажется больше, чем 6 – 7 м, то следует принять несколько параллельно работающих змеевиков. Число ходов при этом составит:

(22)

где L – рабочая длина трубок.

Общее количество трубок принятой длины L составит:

(23)

Это количество трубок необходимо разместить в трубной плите и соответственно с принятым размещением определить диаметр корпуса аппарата.

2.3.2 Выбор и размещение трубок в трубных плитах

Выбор размещения трубок в трубных плитах должен производиться с учетом таких требований:

1) достижение максимальной компактности устройства, приводящей к уменьшению диаметров трубных плит и корпуса аппарата, а также к уменьшению сечения межтрубного пространства, что увеличивает скорость движущейся в нем рабочей среды и повышает коэффициент теплопередачи;

2) обеспечение достаточной прочности трубных плит и условий прочного и плотного крепления трубок в плитах;

3) придание конструкции аппарата максимальной «технологичности» в смысле облегчения условий изготовления и ремонта аппарата.

Соблюдение этих важных требований связано с выбором геометрической конфигурации размещения трубок в плитах и шага размещения.

По геометрической конфигурации различают следующие способы размещения трубок:

1) по вершинам правильных многоугольников;

2) по концентрическим окружностям.

Преимущественно распространение на практике получил первый из этих способов, причем здесь в свою очередь различают размещение труб по вершинам равносторонних треугольников (по сторонам правильных шестиугольников) и по вершинам и сторонам квадратов.

Если a – количество трубок, расположенных по стороне наибольшего шестиугольника, то общее количество трубок в пучке b будет равно:

(24)

При этом количество трубок, расположенных по диагонали наибольшего шестиугольника равно

(25)

Объединив соотношения (24) и (25) можно получить:

(26)

В круглых плитах цилиндрических аппаратов при расположении трубок по периметрам правильных шестиугольников часть плит оказывается неиспользованной.

Количество трубок, размещенных дополнительно на указанных сегментах, определяется в зависимости от числа дополнительных рядов на сегменте (параллельных сторонам шестиугольников) и числом труб в каждом из этих рядов. Данные о количестве дополнительных трубок, располагаемых на сегментах трубных плит, приведены в справочной литературе.

2.3.3 Определение внутреннего диаметра корпуса аппарата

Внутренний диаметр корпуса

теплообменного аппарата определяется в зависимости от активной площади трубной плиты Ф, заключенной в этом корпусе.

(27)

откуда

(28)

Активная площадь трубной плиты слагается из полезной площади Фп, приходящейся на размещенные в плите трубки, и свободной площади Фс, не заполненной трубками:

(29)

Полезная площадь трубной плиты прямо пропорциональна числу трубок аппарата:

(30)

где Фтр– площадь плиты, необходимая для размещения одной трубки, включая и межтрубное пространство.

Величина площади Фтрпри размещении трубок по вершинам правильных многоугольников определяется соотношением

(31)

где t– шаг размещения трубок;

α– угол, образуемый центральными линиями трубных рядов.

Нетрудно заключить, что при размещении трубок по вершинам равносторонних треугольников (шахматное расположение) α = 60º иsinα = 0,866; при размещении трубок по вершинам квадратов (коридорное расположение) α = 90º и sinα = 1.

Свободная площадь трубной плиты определяется ее конструктивным оформлением. К ней относятся площадь по периферии трубного пучка, полосы для помещения перегородок в камерах аппаратов. Она составляет приблизительно 10 – 50 % от полезной площади трубной плиты Фп.

Таким образом, можно написать:

(32)

или также

(33)

где ψ – коэффициент заполнения трубной плиты.

При размещении трубок по шестиугольникам можно принимать ψ = 0,6 – 0,8.

Подставляя выражение (33) в формулу (28) получим расчетное соотношение для определения внутреннего диаметра корпуса аппарата:


(34)

где

;

dн– наружный диаметр трубки.

Если принять во внимание, что поверхность теплообмена аппарата

и пренебречь небольшой разницей между значениями расчетного и наружного диаметров трубки dри dн, то получим:

(35)

Окончательно величина диаметра корпуса уточняется при изображении на чертеже размещения трубок и трубной плиты с учетом всех конструктивных особенностей данного аппарата.

2.3.4 Расчет проточной части межтрубного пространства

При движении в межтрубном пространстве однофазной среды исходным соотношением является по аналогии с расчетом трубного пространства уравнение непрерывности потока: