Смекни!
smekni.com

Расчет конструкции лифта (стр. 9 из 14)

– высокое быстродействие;

–низкая виброактивность и уровень шума;

– технологичность изготовления и малая трудоемкость технического обслуживания;

– обеспечение необходимой точности остановки кабины в лифтах с нерегулируемым приводом.

В лифтовых лебедках используются колодочные тормоза нормально-замкнутого типа с электромагнитной растормаживающей системой. Тормоз замкнутого типа характеризуется тем, что затормаживает систему при выключенном приводе и растормаживает ее при включении привода.

Правила ПУБЭЛ исключают возможность применения ленточных тормозов в связи с их недостаточной надежностью.

Роль тормоза лифтовой лебедки зависит от типа привода. В лебедках с нерегулируемым приводом тормоз используется для обеспечения необходимой точности остановки и надежного удержания кабины на уровне этажной площадки, тогда как в лебедках с регулируемым приводом - только для фиксации неподвижного состояния кабины.

Для наиболее распространенных конструкций колодочных тормозов лифтовых лебедок характерно наличие независимых тормозных пружин каждой колодки, а в некоторых случаях, и независимых растормаживающих электромагнитов.

Тормозные накладки закрепляются на колодках посредством винтов, заклепок или приклеиванием термостойким клеем и обеспечивают угол обхвата шкива от 70° до 90°.

Материал накладок должен обеспечивать высокое и стабильное значение коэффициента трения в широком диапазоне температур, хорошую теплопроводность для исключения местного перегреваповерхности трения и высокую износостойкость.

Кинематические схемы колодочных тормозов весьма разнообразны. Они отличаются способом создания тормозного усилия и особенностями конструкции механизма растормаживания.

Лебедки с верхним горизонтальным расположением червяка оборудуются колодочными тормозами, изготовленными по схеме на рис. 3.10.

Тормозное усилие в этих тормозах создается цилиндрическими пружинами, тогда как выключение тормоза осуществляется электромагнитами постоянного или переменного тока, получающими электропитание в момент включения двигателя лебедки.


Рис. 3.10. Схема колодочного тормоза лифтовой лебедки с короткоходовым электромагнитом

Тормозные электромагниты различаются величиной хода подвижного сердечника (якоря) и подразделяются на короткоходовые и длинноходовые. В конструкциях колодочных тормозов зарубежного и отечественного производства чаще применяются короткоходовые электромагниты постоянного тока, так как они меньше шумят и имеют лучшие тяговые характеристики (рис. 3.11).

Недостатком электромагнитов постоянного тока является их электромагнитная инерция, связанная с большой индуктивностью катушки. Поэтому возникает возможность запуска двигателя под тормозом. Для исключения такой возможности необходимо обеспечить опережающее включение питания магнита.

Для расчета необходимого тормозного момента рассмотрим два режима: испытательный статический режим с перегрузкой и нормальный эксплуатационный режим.


Рис. 3.11. Тормоз с вертикальным расположением электромагнита постоянного тока

1 – шпилька; 2 – фасонная шайба; 3 – втулка опорная; 4 – рычаг; 5 – вилка;

6 – подставка; 7 – якорь; 8 – катушка магнита; 9 – шток; 10 – корпус магнита;

11 – пружина; 12 – двуплечий рычаг; 13 – винт регулировочный; 14 – рычаг;

15 – фиксатор колодки; 16 – колодка

Расчетный тормозной момент определяется по формуле


где

– коэффициент запаса торможения;

Wок – окружное усилие на шкиве при удержании испытательного груза, кг;

D – диаметр шкива, м;

i – передаточное отношение редуктора;

- КПД лебедки.

По табл. 3.5 [11] определяем

=1,4.

Окружное усилие на шкиве при статическом испытании

где

– коэффициент уравновешивания груза;

Rп – коэффициент перегрузки (по ПУБЭЛ Rп =1,5 для грузового малого лифта, барабанных лебедок и лебедок со звездочкой, в которых не допускается транспортировка людей, Rп=2,0 у всех остальных).

По величине тормозного момента

выбираем колодочный тормоз ТКП-200 со следующими параметрами:

– расчетный тормозной момент 122 Н·м;

– диаметр тормозного шкива 200 мм;

– потребная мощность 160 Вт;

– ток 220/380 В 50 Гц;

– тип привода МП 201;

– масса, не более 35 кг.

Расчет работоспособности колодочного тормоза рассмотрим на примере конструкции, приведенной на рис. 3.11. (необходимые размеры и обозначения указаны на схеме).

Исходные данные:

Мтрасчетный тормозной момент, Мт=114 Н·м;

μ – коэффициент трения между колодкой и шкивом, μ=0,5;

l1=0,125, l2=0,228, l3=0,291, l4=0,035, l5=0,070 – величины соответствующих плеч приложения усилий, м;

Dт – диаметр тормозного шкива, Dт = 0,2 мм.

Величина нормальной реакции тормозного шкива на давление колодки

(3.23)

Усилия сжатия тормозной пружины при включенном тормозе найдем из уравнения равновесия рычага 14 относительно центра шарнира О

(3.24)

Давление рычага 12 на регулировочный винт 13 определяем из условия равновесия рычага относительно точки О


(3.25)

Тяговое усилие электромагнита при выключенном тормозе определим из условия равновесия рычага 12 относительно точки О1

(3.26)

Ход якоря (подвижного сердечника) электромагнита рассчитываем по заданному значению радиального зазора между колодкой и шкивом ε

(3.27)

Контактное давление между колодкой и тормозным шкивом

, (3.28)

где В –ширина накладки тормозной колодки, м;

βугол дуги охвата шкива колодкой, рад;

[р]допускаемая величина контактного давления, зависящая от материала накладки, Н/м2.

Условие выполняется, тормоз подобран правильно.

В нормальном рабочем режиме тормоз должен обеспечивать необходимую точность остановки кабины при заданных величинах замедления. Однако тормозной путь кабины с грузом и без него будет различным. Например, при спуске тормозной путь пустой кабины будет меньше, чем тормозной путь груженой кабины, при подъеме - наоборот.

Точностью остановки кабины называется полуразность тормозных путей груженой и пустой кабины, т.е.

, (3.29)

где

– для спуска;
– для подъема.

Величина

для спуска и подъема различна, поэтому для расчета точности остановки следует брать большую величину. Тормозной путь можно рассчитать, пользуясь зависимостью между работами тормозящих, статических и инерционных сил. Если привести все эти силы к окружности шкива, то можно написать уравнение:

, (3.30)

где mп - приведенная к кабине масса всех поступательно и вращательно движущихся частей лифта;

n - скорость кабины;

W0 - статическое окружное усилие на шкиве в рабочем режиме;

Wт- тормозное усилие тормоза, приведенное к окружности шкива;

S - тормозной путь кабины.

Рис. 3.12. Схемы загрузки и направление движения кабины

Знак перед статическим окружным усилием зависит от направления движения и загрузки кабины. При торможении груженой кабины на спуске (рис. 3.12, а) направление сил инерции и окружного усилия совпадает (окружное усилие направлено в сторону ее загруженной ветви). При подъеме пустой кабины (спуск более тяжелого противовеса) направление сил инерции и окружного усилия также совпадает (рис. 3.12, б). Поэтому в формуле (3.30) следует поставить знак плюс. При спуске пустой кабины (рис. 3.12, в) и при подъеме груженой кабины (рис. 3.12, г) направление окружного усилия и сил инерции не совпадает и в этом случае следует принимать знак минус.