1.2 Особенности привода
Приводы металлорежущих станков предназначены для осуществления рабочих, вспомогательных и установочных перемещений инструментов и заготовки. Их делят на приводы главного движения – скорости резания и приводы подач – координатных перемещений и вспомогательных перемещений. К каждому виду привода, с учетом служебного назначения станка, предъявляют свои требования по передаче силы, обеспечению постоянства скорости, ее изменения и настройки, точности перемещения и погрешности позиционирования узла, быстродействию, надежности, стоимости, габаритным размерам.
В данном курсовом проекте будет рассматриваться привод главного движения с бесступенчатым регулированием. Основными достоинствами привода с бесступенчатым регулированием является повышение производительности обработки за счет точной настройки оптимальной по режимам резания скорости, возможность плавного перемещения скорости во время работы, простота автоматизации процесса переключения скоростей. Для бесступенчатого изменения скорости применяют регулируемые двигатели.
Для бесступенчатого регулирования скорости применяют двигатели постоянного тока с тиристорной системой управления. Эти двигатели применяют в станках с ЧПУ, большинство многооперационных станков оснащают такими двигателями.
В приводе главного движения применяют регулируемые за счет изменения частоты тока асинхронные электродвигатели. Эти двигатели обладают высокой надежностью, жесткой характеристикой и обеспечивают регулирование с постоянной мощностью во всем диапазоне.
1.3 Особенности проектирования привода
Приводы главного движения различают по виду приводного двигателя, способу переключения частот вращения и компоновке.
Способ переключения передач определяется назначением станка и в основном от частоты переключения, необходимости автоматизации и дистанционного управления приводом.
В автоматических станках переключение скоростей часто осуществляется с помощью электромагнитных фрикционных или зубчатых муфт. Применение электромагнитных фрикционных муфт позволяет переключать скорости в процессе работы станка, однако уменьшает КПД станка, так как все зубчатые передачи находятся в зацеплении, и существует повышенное трение в дисках.
Автоматические коробки скоростей с элекромуфтами (АКС) выпускают, централизовано с 9, 12 и 18 ступенями семи габаритов, рассчитанные на мощности от 1,5 до 55кВт. Так как электромагнитные муфты нежелательно встраивать в шпиндельные бабки станков, то в станках с ЧПУ в приводах с двигателем постоянного тока применят зубчатые передачи, переключаемые автоматически с помощью электромеханических приводов.
Компоновка привода главного движения определяется общей компоновкой станка, связанной с его служебным назначением и компоновкой станка и типоразмером, а также связями между отдельными элементами привода. При раздельном приводе механическая часть состоит из двух узлов: коробки скоростей и шпиндельной бабки, соединяемой ременной передачей. По такому примеру конструируют приводы станков с ЧПУ с обычным асинхронным двигателем и АКС.
1.4 Технологическое обоснование технических характеристик станков
Горизонтально-фрезерные консольные станкиотличаются наличием консоли и горизонтальным расположением шпинделя при обработке цилиндрическими, угловыми и фасонными фрезами плоских и фасонных поверхностей заготовок из различных материалов. Могут также использоваться торцовые и концевые фрезы. Универсальные станки этого вида отличаются тем, что их стол может поворачиваться относительно вертикальной оси ±45°, что позволяет вести обработку винтовых канавок на цилиндрических поверхностях с использованием делительной головки. Столы этих станков имеют размер от 160 х 630 мм (мод. 6Н80Г) до 400 х 1600 мм (мод. 6М83) и имеют продольные Т-образные пазы для установки различных приспособлений. Ширина этих пазов обычно 14—28 мм. Этот размер следует учитывать при подборе или конструировании приспособления.
Основные узлы и рабочие движения консольных станков. Консольные фрезерные станки отличаются от бесконсольных устройством механизма вертикальной подачи: консоль, несущая стол станка, имеет возможность вертикального перемещения. У бесконсольных станковвертикальную подачу совершает шпиндельная бабка. Исследования показывают более высокую точность бесконсольных (горизонтальных и вертикальных) станков. Для повышения точности станков консольного типа применяют специальные поддержки скрепляющие консольсхоботом станка.
Технологические возможности станка могут быть расширены применением делительной головки, поворотного круглого стола и накладной- универсальной головки. Станок может быть настроен на ряд автоматических циклов. Горизонтальный станок отличается от описанного отсутствием возможности поворота стола, а вертикальный также и компоновкой шпиндельного узла (см. рис. 153,а). На консольных фрезерных станках обрабатывают вертикальные, горизонтальные и наклонные плоскости, пазы, углы, уступы и т. п.
Вспомогательный инструмент и нормальные приспособления станков. Приспособления для закрепления режущего инструмента на фрезерныхстанках или вспомогательные инструменты фрезерных станков позволяют устанавливать на станке насадные, хвостовые, концевые фрезы и фрезерные головки. Конструкция вспомогательного инструмента зависит от конструкции крепежно-присоединительной части фрезы, оформления присоединительных элементов станка, соотношения размеров фрезы и шпинделя и ряда других факторов. Фрезы, имеющие цилиндрический хвостовик, закрепляются в цанговые или других центрирующих ось фрезы патронах, а сам патрон крепится в шпинделе станка. Фрезы с коническим хвостовиком могут крепиться непосредственно в шпинделе или через втулку. Следует отметить, что конус шпинделя ряда станков имеет конусность 7:24, при этом угол конуса превышает угол трения втулки о шпиндель и соединение становится несамотормозящим, что требует принудительной затяжки инструмента в отверстие шпинделя. Эта затяжка осуществляется так называемым шомполом, т. е. длинной шпилькой, ввернутой в резьбовое отверстие хвостовика фрезы. Крутящий момент передается со шпинделя через сухари и торцовые пазы втулки на корпус фрезы. Насадные фрезы своим отверстием базируются на оправке. При консольном расположении фрезы крутящий момент передается продольной шпонкой, а винт закрепляет фрезу на оправке. Цилиндрические насадные фрезы закрепляются на длинной оправке. Положение набора фрез вдоль оси фиксируется также установочными кольцами. Оправка 5 одним концом крепится в шпинделе 1, а другим — в серьге или подвеске станка. Двухопорное закрепление повышает жесткость технологической системы. При работе набором фрез для регулировки расстояния между фрезами иногда используется раздвижное кольцо 3. Торцовые фрезы большого диаметра (свыше 250 мм) крепятся на шпинделе четырьмя винтами, центрируются пояском шпинделя, а крутящий момент передается двумя торцовыми шпонками.
Станочные приспособления используются для установки заготовок на столе, т. е. для ориентации заготовки относительно координатных осей и для надежного закрепления ее в этом положении. Для фрезерных станков характерно широкое применение таких универсальных приспособлений, как станочные тиски, столы, делительные головки и элементарные зажимные устройства (рис. 156). В условиях серийного и массового производства применяют специальные приспособления для обработки конкретной заготовки или группы заготовок. В ряде случаев используют дополнительные устройства, расширяющие технологические возможности фрезерных станков: головки, изменяющие положение шпинделя, что позволяет работать фрезой с горизонтальной или вертикальной осью; головки, позволяющие долбить заготовку, вести копировальные работы на обычных фрезерных станках и т. п. Станочные тиски могут иметь, кроме винтовых, зажимные элементы в виде эксцентриков, пневматических камер, гидравлических цилиндров, пружин, рычагов и т. п. Различают тиски неповоротные и поворотные относительно двух взаимно перпендикулярных осей. Тиски обеспечивают надежное, быстрое закрепление заготовки при малых собственных размерах и высокой жесткости. Известны тиски с одной подвижной губкой, самоцентрирующие (с двумя подвижными губками), с "плавающими" губками и т. п. В ряде случаев применяют специальные губки, по форме зажимной поверхности для закрепления заготовок сложной формы (цилиндрических, для лопаток турбин и т. п.).
2. Выбор предельных режимов резания и электродвигателя
2.1 Размеры заготовок и инструментов
ТИП СТАНКА | Диаметр заготовки или инструмента, мм. | |
Dmax | Dmin | |
Горизонтально-фрезерный со столом шириной Вс, мм. | (0,4-0,5)Вс | (0,1-0,2)Вс |
Размеры заготовок и инструментов подлежащих обработке на универсальных станках, определяются из экономичских соображений, связывая их с одной из размерных характеристик станка. В таблице 1.1 приведены ориентировочные значения предельных размеров заготовок и инструментов, которые принимаются при проектировании универсальных станков.
Расчитуем диаметр инструмента:
Dmax.=0.4*400=160мм.
Dmin=0.15*400=60мм.
Таблица 2.2 Ширина фрезерования
ТИП СТАНКА | Расчетная ширина фрезерования, мм | |
Вmax | Bmin | |
Горизонтально-фрезерныйсо столом шириной Вс, мм. | (0.75-1.0)Dфр.мах. | (0,75-1,0)Dфр.min |
Исходя из таблицы 2.2 расчитуем ширину фрезерования: