Смекни!
smekni.com

Расчет машинного агрегата для получения электрической энергии с помощью генератора (стр. 7 из 9)


Определяем масштаб

, МПа/мм:

, (86)

МПа/мм


Таблица 18 – Давление газа в цилиндре, рi

Относительное перемещение поршня
Давление газа, МПа
Расширение Выхлоп Всасывание Сжатие
0,00 23,2 0,8 0,8 23,2
0,05 80 0,8 -0,8 16
0,20 40 0,8 -0,8 8
0,40 23,2 0,8 -0,8 3,2
0,60 15,2 0,8 -0,8 1,2
0,80 11,2 0,8 -0,8 0
1,00 4 4 -0,8 -0,8

Ординаты индикаторной диаграммы измеряются от атмосферной линии. Диаграмма выражает закон изменения избыточного давления в цилиндре от хода поршня. Позволяет определить силы давления на поршень в любой момент времени. Разбиваем отрезок на оси абсцисс 0φ, выражающий 4 такта работы ДВС на 24 равных отрезка, определяем давление в соответствующих точках, МПа:

рi=pi
, (87)

Полученные значения давления представим в таблице 19.


Таблица 19 – Давление газа в цилиндре, рi

i 0 1 2 3 4 5 6 7 8
рi, МПа 0,899 1,86 1,046 0,7 0,5 0,38 0,155 0,035 0,031
i 9 10 11 12 13 14 15 16
рi, МПа 0,031 0,031 0,031 0,031 -0,031 -0,031 -0,031 -0,031
i 17 18 19 20 21 22 23 24
рi, МПа -0,031 -0,031 -0,02 0,038 0,078 0,155 0,38 0,899

Определяем движущую силу, Рi, Н:

, (88)

Н

Значения Рi для остальных положений приводим в таблице 20.

Таблица 20 – Значение сил движущих

i 0 1 2 3 4 5 6 7 8
Рi, Н 5134,85 10623,82 5974,5 3998,2 2855,87 2170,46 885,32 200 177,1
i 9 10 11 12 13 14 15 16
Рi, Н 177,1 177,1 177,1 177,1 -177,1 -177,1 -177,1 -177,1
i 17 18 19 20 21 22 23 24
Рi, Н -177,1 -177,1 114,23 217 445,51 885,32 2170,5 5134,85

Приведенный момент движущих сил, Нм:

Нм

Значения Мпр дi для остальных положений приводим в таблице 21.

Таблица 21 – Значения приведенного момента движущих сил

i 0 1 2 3 4 5 6 7 8
МпрiНм 0 278,76 296,62 255,88 174,72 82 0 -7,6 -10,8
i 9 10 11 12 13 14 15 16
МпрiНм -11,33 -8,8 -4,65 0 -4,65 -8,8 -11,33 -10,8
i 17 18 19 20 21 22 23 24
МпрiНм -6,7 0 -5,45 -13,3 -28,5 -44 -57 0

По полученным значениям Мпр.д. строим график приведенного движущего момента. По оси абсцисс откладываем в масштабе

, рад/мм, отрезок, соответствующий углу поворота коленчатого вала. Разбиваем отрезок на 24 части и из соответствующих точек откладываем в масштабе
Нм/мм значения приведенного момента сил движущих.

На участке, соответствующему такту расширения, момент движущих сил – положительная величина На участках, соответствующих тактам выхлопа, всасывания и сжатия – отрицательная величина. Запас кинетической энергии, полученный за время расширения, расходуется в процессе трех последующих тактов.

Диаграмму приведенного момента сил сопротивления Мпр.п.с. (см. чертеж ЧГУ.С.КП.150404.00.00.04) строим как среднее арифметическое Мпр. ср., Нм:

, (89)

Мпр.ср.=35,67 Нм


Угловая скорость звена приведения в точке «а» принимает минимальное, а в точке «в» максимальное значения. Для уменьшения неравномерности вращения звена приведения устанавливаем маховик.

Определяем момент инерции маховика, кгм2:

, (90)

где

-избыточная площадь, мм2;

=3954 мм2;

-коэффициент неравномерности;

-угловая скорость коленчатого вала, рад/с;

-масштабный коэффициент работ, (Нм)/мм2:

, (91)

Нм/мм2

Приведенный к звену приведения момент инерции всех подвижных звеньев, кгм2:

Jпр=JК+JP+JГ, (92)

где JК=0,05 кгм2 – приведенный к звену приведения момент инерции КПМ, зависит от угла поворота;

JК – приведенный к звену приведения момент инерции планетарного редуктора, постоянен, в виду малости величины можно пренебречь;

JГ=0,02 кгм2 – приведенный к звену приведения момент инерции ротора генератора.

Jпр=0,05+0,02=0,07 кгм2

кгм2

Определяем маховый момент маховика:

m

D2М=4JМ, (93)

Принимаем диаметр окружности маховика DМ=0,2 м.

Определяем массу маховика, кг:

m=

,

m=

кг

Определяем ширину обода, м:

в=

, (94)

в=

м

Определяем толщину обода, м:

с=0,4в, (95)

с=0,4

0,036=0,0144 м

Определяем масштаб построения схемы махового колеса, м/мм:

м/мм

6. Силовой анализ кривошипно-ползунного механизма

6.1 Кинетостатический расчет без учета сил трения методом построения планов сил

В задачу силового анализа методом построения планов сил входит определение реакций в шарнирах и опорах, уравновешивающего момента.

Кривошипно-ползунный механизм расчленяют на группу Ассура и начальный механизм.

6.1.1 Силовой анализ группы Ассура

Группа Ассура включает ползун 3 и шатун 2 (см. чертеж ЧГУ.С.КП. 150404.00.00.05). На нее действуют движущая сила Р, сила веса ползуна G3 и шатуна G2, сила инерции ползуна Рин, сила и моменты сил инерции шатуна Ри2, Ми2; реакции в шарнирах и опорах R03, R12.

Движущая сила Р=10623,82 Н.

Определяем вес ползуна, Н:

G3=m3

g, (96)

G3=0,8568

9,81=8,4 Н

Вес шатуна, Н:

G2=1,2852

9,81=12,6 Н

Сила инерции ползуна РИН=3111 Н.

Сила инерции шатуна, Н:

РИ2=-m2

aS2, (97)

где aS2 – ускорение центра тяжести шатуна, м/с2;

aS2=4750 м/с2.

РИ2=-1,2852

4750=-6104,7 Н

Момент сил инерции шатуна, Нм:

MИ2=-JS2

ε2, (98)

где ε2 – угловое ускорение шатуна, рад/с2;

ε2=8795 рад/с2;

JS2 – момент инерции шатуна относительно оси, проходящей через центр тяжести и перпендикулярно плоскости движения, кгм2: