1. Устройство и принцип работы машинного агрегата
Машинный агрегат образован последовательным соединением двигателя внутреннего сгорания (ДВС) I, передаточного механизма II и генератора электрического тока III (см. рисунок 1). Одноцилиндровый двигатель внутреннего сгорания служит для преобразования потенциальной энергии продуктов сгорания в механическую работу вращательного движения, которая преобразуется в генераторе в электрическую энергию. Так как угловая скорость вращения ДВС не равна угловой скорости вращения ротора генератора, то между ДВС и генератором установлен передаточный механизм, в виде планетарного зубчатого редуктора.
Рисунок 1 – Схема машинного агрегата
Двигатель внутреннего сгорания (см. рисунок 2) включает кривошипно-ползунный механизм (КПМ) и механизм газораспределения (МГ).
КПМ состоит из кривошипа (коленчатого вала) 1, шатуна 2, ползуна (поршня) 3 и стойки (корпуса) 0. Силой, вызывающей движение поршня является сила давления расширяющихся газов. Механизм газораспределения обеспечивает наполнение рабочих цилиндров свежим зарядом и очистку их от отработанных газов. Основными элементами механизма газораспределения являются впускные и выпускные клапаны 4 и распределительные валы 5 с кулачками 6. Движение к клапану передается через толкатель 7, штангу 8 и коромысло 9. Кулачок взаимодействует с толкателем по средствам ролика, установленного в нижней части толкателя. Движение к распределительному валу 5 от кривошипа 1 может передаваться цепной передачей или набором цилиндрических зубчатых колес.
Рисунок 2 – Схема двигателя внутреннего сгорания
2. Структурный анализ механизмов
2.1 Общие сведения
Выполнение структурного анализа агрегата проводится в следующей последовательности:
1. Разбивка машинного агрегата на простые механизмы, установка их вида и наименования;
2. Определение количества звеньев в механизме, характера их относительного движения, названия звеньев. Выделение входных (ведущих) и выходных (ведомых) звеньев, их нумерация;
3. Определение вида и класса кинематических пар механизма, обозначение и классификация, определение количества пар каждого класса. Вращательные пары, образованные подвижными и неподвижными звеньями обозначают «О» с индексом подвижного звена; образованные подвижными звеньями – первыми буквами латинского алфавита;
4. Расчет числа степеней свободы механизма.
W=3(n-1)-2p5-1p4, (1)
где W-степень подвижности механизма;
n-число звеньев механизма, включая стойку;
p4, p5 –число кинематических пар 4-го и 5-го класса.
Степень подвижности механизма определяет количество звеньев, которым необходимо задать движение, чтобы все остальные звенья двигались по вполне определенным законам.
2.2 Структурный анализ кривошипно-ползунного механизма
КПМ-плоский, четырехзвенный механизм (n=4): звено 0-стойка; 1-кривошип, совершающий вращательное движение; 2-шатун, совершающий сложное плоскопараллельное движение;3-ползун, совершающий возвратно-поступательное движение (см. рисунок 3).
Рисунок 3 – Структурная схема кривошипно-ползунного механизмаЗвенья механизма соединены между собой четырьмя кинематическими парами 5 класса. Характеристика кинематических пар кривошипно-ползунного механизма приведена в таблице 1.
Таблица 1 - Характеристика кинематических пар КПМ
Обозначение | Наименование | Звенья | Класс | Характеристика |
О1 | Вращательная | Кривошип 1- стойка 0 | 5 | Плоская, низшая |
А | Вращательная | Кривошип 1- шатун 2 | 5 | Плоская, низшая |
В | Вращательная | Шатун 2 – ползун 3 | 5 | Плоская, низшая |
В0 | Поступательная | Ползун 3 – стойка 0 | 5 | Плоская, низшая |
Определяем степень подвижности механизма по формуле 1, где n=4, p4=0, p5=4
W=3(4-1)-2
4-0=1Это значит, что в механизме должно быть одно начальное (ведущее) звено- кривошип 1.
При исследовании КПМ выделяем из механизма структурные группы (группы Ассура) и начальный механизм. Группа Ассура – простейшая кинематическая цепь с парами 5-го класса, присоединенная свободными элементами звеньев к стойке и имеющая нулевую степень подвижности. Группа Ассура состоит только из четного числа звеньев. Для плоских механизмов с низшими парами формула групп Ассура имеет вид:
W=3n-2p5, (2)
Для кривошипно-ползунного механизма:
W=3
2-2 3=0Начальный механизм состоит из кривошипа 1, присоединенного к стойке кинематической парой О1. Степень подвижности начального механизма:
W=3
(2-1)-2 1=1Кривошипно-ползунный механизм является механизмом 2-го класса 2-го порядка.
2.3 Структурный анализ кулачкового механизма
Трехзвенный кулачковый механизм состоит из стойки 0, кулачка 1, толкателя 2, ролика 2’ (см. рисунок 4). Кулачок совершает равномерное вращательное движение с угловой скоростью ωк, толкатель совершает прямолинейное возвратно-поступательное движение со скоростью vА.
Рисунок 4 – Структурная схема кулачкового механизма
Классификация кинематических пар кулачкового механизма приведена в таблице 2.
Таблица 2 - Классификация кинематических пар
Обозначение | Наименование | Звенья | Класс кинематической пары |
О1 | Вращательная | Кулачок 1- стойка 0 | 5 |
А | Кулачковая | Кулачок 1- толкатель 2 | 4 |
А’ | Вращательная(пассивная) | Ролик 2’- толкатель 2 | 5 |
В | Поступательная | Толкатель 2- стойка 0 | 5 |
По формуле 1 определяем степень свободы кулачкового механизма:
где n=3;
p4=1;
p5=2.
W=3
(3-1)-2 2-1 1=1Для привода кулачкового механизма достаточно одного источника движения.
3. Кинематический анализ и синтез механизмов
Кинематический синтез механизмов сводится к определению основных размеров звеньев по структурным схемам и закономерностям движения. По полученным размерам строятся кинематические схемы механизмов.
Кинематический анализ механизмов сводится к решению следующих задач:
- разметка траектории движения всех звеньев механизма, позволяющая рационально спроектировать корпусные детали механизма;
- определение скоростей характерных точек механизма в различных его положениях, сто позволяет найти кинетическую энергию всех подвижных звеньев механизма;
- определение ускорений характерных точек механизма для последующего нахождения силы инерции звеньев.
Результаты аналитического анализа используют при динамическом исследовании агрегата.
3.1 Кривошипно-ползунный механизм
3.1.1 Кинематический синтез центрального кривошипно-ползунного механизма
Определяем ход поршня, h0,, м:
h0=
, (3)где vср – средняя скорость движения поршня, м/с;
n1 – частота вращения коленчатого вала, об/мин.
h0=
мОпределяем радиус кривошипа, r, м:
r=h0/2, (4)
r=0,128/2=0,064 м
Определяем длину шатуна, l, м:
l=r/ λ, (5)
l=0,064х4,8=0,307 м
По известным размерам звеньев вычерчиваем кинематическую схему КПМ.
Определяем масштабный коэффициент длин, μl, м/мм:
μl=
, (6)где rист – истинное значение радиуса кривошипа, м;
О1А – отрезок на чертеже, отображающий ход поршня, мм.
μl=
м/мм3.1.2 Анализ кривошипно-ползунного механизма
3.1.2.1 Графический метод планов
Угол поворота кривошипа О1Аi разбиваем на 12 частей. За начало отсчета принимаем положение кривошипа и шатуна, соответствующее нижней мертвой точке ползуна. Из точек Аi циркулем отмеряем расстояние равное длине шатуна АВ в масштабе и на линии движения ползуна делаем засечки. Соединив точки Аi с соответствующими точками Вi,, получаем промежуточные положения шатуна.
Определяем положение ползуна в соответствующих точках, SBi, м:
SBi=
, (7) где SBi– положение ползуна на чертеже:SB1=7 мм, SB2=28 мм, SB3=56 мм, SB4=91 мм, SB5=117 мм, SB6=128 мм.