Смекни!
smekni.com

Расчет на прочность при напряжениях, циклически изменяющихся во времени (стр. 2 из 4)

Практически, как показывает опыт, образец из углеродистой стали, выдержавший 107 циклов (это число называется базой испыта­ний), может выдержать их неограниченно много.

Поэтому после прохождения 107 циклов для стальных образцов опыты прекращают.

Напряжение δ-1, соответствующее N = 107, принимается за предел выносливости.

Для цветных металлов и для закаленных сталей не удается установить такое число циклов, выдержав которое, образец не разрушился бы в дальнейшем. Для этих случаев введено понятие предела ограниченной выносливости, как наибольшего по величине максимального напряжения цикла, при котором образец способен выдержать определенное число циклов (обычно N = 108).

Аналогичным образом, но на других машинах проводят испытания и находят пределы выносливости при действии осевых сил δ-1, при кручении (τ-1) и при сложных деформациях.

В настоящее время для многих материалов пределы выносливости найдены и приводятся в справочниках. Из этих данных видно, что для большинства металлов предел выносливости при симметричном цикле меньше предела текучести.

Многие детали машин за время своей службы испытывают только ограниченное число перемен напряжений. В этих случаях расчет ведут

по более высокому пределу ограниченной выносливости, при которой материал выдерживает заданное число циклов. Его величина опре­деляется по кривой усталости для заданного числа циклов.

ДИАГРАММЫ ПРЕДЕЛЬНЫХ НАПРЯЖЕНИЙ

Для определения предела выносливости при действии напряжений с асимметричными циклами строятся диаграммы различных типов. Наиболее распространенными из них являются:

1)диаграмма предельных напряжений, в координатах δmax — δm (диаграмма Смита);

2)диаграмма предельных амплитуд, в координатах δа — δт (диаграмма Хэя).

Рассмотрим эти диаграммы предельных напряжений. В диаграмме Смита предельное напряжение цикла, соответствующее пределу выносливости, откладывается по вертикали, среднее на­пряжение — по горизонтальной оси (рис. 12.6).

Вначале на ось δтах наносится точка С, ордината которой представляет собой предел выносливости при симметричном цикле δ-1 (при симметричном цикле среднее напряжение равно нулю). Затем эксперимен­тально определяют предел выносливости для какой-нибудь асимметричной нагрузки, например для отнулевой, у которой максимальное напряжение всегда в два раза больше среднего. На диаграмму нанесем точку Р, ордината которой представляет собой предел выносливости для отнулевого цикла δ0. Для многих материалов значения δ-1 и δ0 определены и приводятся в справочниках.

Аналогично опытным путем определяют предел выносливости для асимметричных циклов с другими параметрами.

Результаты наносят на диаграмму в виде точек А, В и т. д., ординаты которых есть пределы выносливости для соответствующих циклов напряжений. Точка D, лежащая одновременно и на биссектрисе OD, характеризует предельное напряжение (предел прочности) для постоянной нагрузки, у которой δmах = δт.

Так как для пластичных материалов опасным напряжением является также предел текучести о*.,, то на диаграмме наносится горизонтальная линия KL, ордината которой равна δт. (Для пластичных материалов, диаграмма растяжения которых не имеет площадки текучести, роль δт играет условный предел текучести δ0,2.) Следовательно, диаграмма предельных напряжений окончательно будет иметь вПД CAPKL.

Обычно эту диаграмму упрощают, заменяя ее двумя прямыми СМ и ML, причем прямую СМ проводят через точку С (соответствующую симметричному циклу) и точку Р (соответствующую отнулевому циклу).

Указанный способ схематизации диаграммы предельных напряжений предложен С. В. Серенсеном и Р. С. Кинасошвили.

В этом случае в пределах прямой СМ предельное напряжение цикла (предел' выносливости) будет выражаться уравнением

(6)

или

(7) где

(8)

Коэффициент

характеризует чувствительность материала к асим­метрии цикла.

При расчетах на выносливость часто пользуются также диа­граммой предельных амплитуд, которая строится в координатах

(диаграмма Хэя). Для этого по вертикальной оси откладывают амплитудное напряжение, по горизонтальной оси — среднее (рис. 12.7).

Точка А диаграммы соответствует пределу выносливости при сим­метричном цикле, так как при таком цикле δт = 0.

Точка В соответствует пределу прочности при постоянном напря­жении, так как при этом δа = 0.

Точка С соответствует пределу выносливости при пульсирующем цикле, так как при таком цикле δа = δт.

Другие точки диаграммы соответствуют пределам выносливости для циклов с различным соотношением δа и δm.

Сумма координат любой точки предельной кривой АСВ дает величину предела выносливости при данном среднем напряжении цикла

Для пластичных материалов предельное напряжение не должно превосходить предела текучести


Поэтому на диаграмму предельных напряжений наносим пря­мую DE, построенную по уравнению

Окончательная диаграмма предельных напряжений имеет вид AKD.

На практике обычно пользуются приближенной диаграммой δа—δт, построен­ной по трем точкам А, С и Dи состоящей из двух прямолинейных участков ALи LD(способ Серенсена — Кинасо-швили). Точка Lполучается в результате пересечения двух прямых: прямой DEи прямой АС. Расчеты по диаграмме Смита и Хэя при одинаковых способах ап­проксимации приводят к одним и тем же результатам.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЕЛИЧИНУ ПРЕДЕЛА ВЫНОСЛИВОСТИ

Опыты показывают, что на величину предела выносливости су­щественно влияют следующие факторы: концентрация напряжений, размеры детали, состояние поверхности, характер технологической обработки и др.

Рассмотрим их более подробно.

А. Влияние концентрации напряжений

Резкие изменения формы детали, отверстия, выточки, надрезы и т. п. значительно снижают предел выносливости по сравнению с пре­делом выносливости для гладких цилиндрических образцов.

Это снижение учитывается эффективным коэффициен­том концентрации напряжений, который определяется экс­периментальным путем.

Для этого берут две серии одинаковых образцов (по 10 образцов в каждой), но первые без концентрации напряжений, а вторые — с кон­центрацией и определяют пределы выносливости при симметричном цикле для образцов без концентрации напряжений δг и для образцов с концентрацией напряжений δ-1к

Отношение

(9)

определит величину эффективного (действительного) коэффициента концентрации напряжений. Опыты показывают, что этот коэффициент отличается от теоретического αδ0, так как первый зависит не только от формы детали, но и от материала. Значения k0 приводятся в справочниках. Для примера на рис. 12.8 приведены значения эффективных коэффициентов концентрации при изгибе для ступенчатых валов с отношением
,

с переходом по круговой галтели радиуса r. Эти данные получены при испытании образцов d= 30

50 мм для сталей с пределом прочности
в = 50 кГ/мм2 и 120 кГ/мм2. Там же для сравнения приведен график теоретического коэффициента концентрации аδ (пунктиром).

На рис. 12.9 даны значения коэффициентов концентрации при кручении ат и kт, a на рис. 12.10—для растяжения сжатия.

Для определения эффективных коэффициентов концентрации при других отношениях

следует пользоваться формулой

(10)

где (ko)0 — эффективный коэффициент концентрации, соответствую­щий отношению

;

— поправочный коэффициент, определяемый по рис. 12.11, при этом кривая 1 дает значение
при изгибе, кривая 2 — при кручении.