тогда:
,где с – плотность газа, м – динамическая вязкость газа:
Для определения режима движения на первом участке рассчитаем число Рейнольдса:
Re1>Reкр=2320, следовательно режим движения турбулентный.
Рассчитаем толщину ламинарного подслоя:
Абсолютная шероховатость ∆=0.5мм. Тогда ∆>д имеем область гидравлически шероховатых труб.
Коэффициент трения л1 определяем по формуле Никурадзе:
Определим коэффициент сопротивления b на первом участке. Коэффициенты местных сопротивлений принимаем равными овентиля стандартного = 4,5, околена = 2, овентиля «рей» = 3,2. Следовательно ∑о = овентиля стандартного+ околена*5+ овентиля «рей» =4,5+2*5+3,2=17,7 Длина первого участка
Для определения режима движения на втором участке рассчитаем число Рейнольдса:
Re1>Reкр=2320, следовательно режим движения турбулентный.
Рассчитаем толщину ламинарного подслоя:
Абсолютная шероховатость ∆=0,5мм. Тогда ∆>д имеем область гидравлически шероховатых труб.
Коэффициент трения л2 определяем по формуле Никурадзе:
Определим коэффициент сопротивления bна втором участке. Внезапное расширение: орасш =
. Внезапное сужение осуж = 0.5 . Следовательно ∑о= орасш+ осуж =0.096 Длина второго участкаДля определения режима движения на третьем участке рассчитаем число Рейнольдса:
Re3 = Re1 =955932,2,
т.к. W3 = W1, и d3 = d1.
Re3>Reкр=2320, следовательно режим движения турбулентный.
Рассчитаем толщину ламинарного подслоя:
Абсолютная шероховатость ∆=0,5мм.Тогда ∆>д имеем область гидравлически шероховатых труб.
Коэффициент трения л3 определяем по формуле Никурадзе:
Определим коэффициент сопротивления b на третьем участке. Коэффициенты местных сопротивлений принимаем равными овентиля стандартного = 4,5, околена = 2, овентиля «рей» = 3,2. Следовательно ∑о = овентиля стандартного+ околена*5+ овентиля прямоточного =4,5+2*5+3,2=17,7 Длина третьего участка
Участки 1,2 и 3 соединены последовательно, значит:
Рассчитаем потери на всем трубопроводе:
4) Определение давления на входе:
Выберем давление на входе, равное конечному давлению плюс 3% от значения конечного давления
Парасчетное практически совпадает с выбранным давлением, следовательно, давление на выходе из воздуходувной станции равно 1,94*105 Па
4)Построение характеристики сети:
Уравнение напорной характеристики сети записывается следующим образом:
H=a+(c+b)Q2
Где
Для данного трубопровода уравнение характеристики сети имеет вид:
H= -201,2 + 12,733Q2
Эскиз воздухопровода
В данном курсовом проекте был рассчитан стальной воздухопровод. В гидравлическом расчете было определено давление на входе P1=1,94*105 Па и построена характеристика сети воздухопровода, график которой представляет собой параболу:
Для данной сети постоянная а, отвечающая сумме геометрической подачи и приращению пьезометрического напора, не изменяется в ходе эксплуатации трубопровода.
Иная картина наблюдается с сопротивлением трубопровода b, учитывающим потери напора на трение и местные потери. Для данной сети коэффициент трения более или менее постоянен, 0,0452 < л< 0.0466. Что касается коэффициента местных потерь, то для данной сети он может быть легко изменен с помощью дроссельных устройств - вентилей.