Смекни!
smekni.com

Расчет стального газопровода (стр. 3 из 3)

2). О. Флореа, О. Смигельский «Расчеты по процессам и аппаратам химической технологи» (с. 420-444);

3). Л. В. Арнольд, Г. А. Михайловский, В. М. Селивериев «Техническая термодинамика и теплопередача» (с. 342)


5. Результаты расчётов и их анализ

5.1 Расчет потерь напора на трение

1) Для перевода расхода в систему СИ необходимо найти плотность при заданной температуре

определяемой по формуле (3.4), но для этого нужно вычислить давление при нормальных условиях
вычисляемой по формуле (3.3):

;

;

2). Переводим расход Q из технической системы в систему СИ:

;

3). Определение диаметра газопровода по формуле (3,6):

4) Перерасчет скорости газа по полученному диаметру. Формулы (3.7),(3.8):


W2=W3

5) Определение динамической вязкости для заданной температуры (3.9):

;

6) Определение кинематической вязкости (3.10):

;

7) Определение числа Reдля каждого участка газопровода (3.11):

;

;

Re2=Re3

Сравнив полученные значения со значением Re=2300, делаем вывод что наш режим движения в газопроводе турбулентный на всех участках.

8) Определяем толщину ламинарного подслоя, для каждого участка (3,12):

;

;

Сравнив полученные значения с величиной абсолютной шероховатости

отсюда делаем вывод, что газопровод составлен из гидравлически шероховатых труб.

9)Так как трубы гидравлические шероховатые ,то для определения коэффициента трения

используем формулу Никурадзе(3,19):

;

10) Теперь рассчитываем потери напора на трение по формуле (3.1):

5.2 Расчёт местных потерь напора

1) Расчет местных потерь напора определяется по формуле (3.13):


2) Определение общих потерь напора в газопроводе находим по формуле (3.15), которая состоит из суммы потерь напора на трение и местных потерь:

;

;

Учитывая, что потери напора на втором и третьем участках равны:

;

3) Из уравнения Бернулли(3.20), найдем p2:

Удельный вес

найдем по формуле (3.21), в нашем случае
.

;

p2=

;

5.3 Построение характеристики сети

1) По формуле (3.32) находим постоянную величину а:

;

2). Далее определяем сопротивление газопровода b , для каждого участка, используем формулу (3.23):

;

;

3). По формуле (3.26) находим сопротивление для параллельного соединения газопроводов (участок 2-3):

4). Определяем общее сопротивление газопровода:

b=b1+b2-3 =29,49+1,91=31,4

5). Характеристику сети строим по полученному уравнению и в соответствии с заданным значением расхода газопровода (приложение 2):


Заключение

На примере данного газопровода мы ознакомились с основными навыками теоретического применения законов гидроаэромеханики для оценки параметров сети. В результате такого исследования можно практически точно создать на практике условия наиболее выгодные в экономическом и техническом плане, что позволяет снизить затраты на конструирование газопровода с достижением наибольшей его производительности.