Кафедра КТЭИ
Переработка полимеров
Лабораторная работа
"Расчёт зоны плавления"
2009
Цель лабораторной работы - изучение процессов тепломассопереноса полимера в зоне плавления червячного пресса. Задачей лабораторной работы является исследование влияния геометрических, технологических и физических факторов на изучаемый процесс с использованием метода математического моделирования.
Задание
В соответствии со своим вариантом задания выполнить следующие расчеты.
1) Для заданного номинального технологического режима:
– разработать алгоритм и расчетную программу;
– рассчитать компоненты скоростей и относительную скорость;
– определить длину зоны плавления, определить Ф и Y; определить длину зоны плавления для канала постоянной глубины, для канала переменной глубины;
– рассчитать ширину твердой пробки в зависимости от длины зоны плавления или для канала постоянной или переменной глубины соответственно;
– определить распределение скорости плавления по длине;
– рассчитать распределение температуры по высоте канала в пяти различных сечениях в зоне плавления для жидкой и твердой фаз соответственно.
2) Исследовать влияние на процесс плавления полимера следующих факторов:
– температуры корпуса;
– начальной температуры материала;
– частоты вращения шнека;
– расхода материала;
– физико-механических свойств материала;
– угла конусности винтовой нарезки червяка.
3) Провести анализ полученных закономерностей процессов тепломассопереноса полимера в зоне плавления экструдера.
4) Построить графики полученных зависимостей.
5) Оформить отчет.
Номер варианта | Диаметр шнека, м | Угол нарезки, гр. | Шаг нарезки, м | Ширина гребня, м | Высота канала в з. п., м | Скорость вращения, об/мин | Расход мате-риала, кг/с | Темпе-ратура в з. п., °С |
5 | 0.09 | 17.67 | 0.09 | 0.009 | 0.015-0.007 | 60 | 0.01944 | 220-250 |
Таблица 2. Физико-механические параметры
№ | ls \lmДж/м/с/×°С | rs\rmкг/м3 | cs \cmДж/кг×°С | μПа·с | Тs,°С. |
3 | 0.22\ 0.25 | 930 \1000 | 2010\2060 | 12000 | 25 |
Тb=235 oC, - температура корпуса; Tm=140 oC, - температура плавления полимера.
Краткие теоретические сведения
Для математического описания процессов движения и плавления в канале пластицирующего экструдера возможно использовать различные подходы, основанные на тех или иных упрощающих предположениях. Наиболее простой математической моделью процесса плавления является модель З.Тадмора, позволяющая в одномерной постановке определить зависимость длины зоны плавления от различных технологических, геометрических характеристик и свойств перерабатываемого материала.
Допущения модели Тадмора:
1) кривизной канала пренебрегаем;
2) процесс стационарный;
3) расплав является ньютоновской жидкостью;
4) в целом задача одномерная;
5) характеристики материала постоянны;
6) пробка гранул имеет прямоугольную форму;
7) плавление происходит только у внутренней поверхности корпуса;
8) температура пробки гранул изменяется только по высоте канала;
Представление процессов движения и теплообмена полимеров основывается на законах сохранения массы, количества движения и энергии.
Главной задачей исследования является нахождение длины зоны плавления, которая определяется длиной канала, где ширина твердой фазы обращается в нуль.
Обозначим ширину пробки гранул через X, получим зависимость X=X(z), т. е. изменение ширины пробки по длине канала. Выделим из пробки гранул элементарный объем. На рис. 3 представлен элементарный фрагмент пробки и распределение температуры в поперечном сечении канала
Рис. 3. Элементарный объём пробки гранул и температурный профиль пробки гранул
(1) (2)Где Vb – окружная скорость; Vbz – компонента окружной скорости в направлении оси z; Vbx – компонента окружной скорости в направлении оси x; Vsz – скорость пробки вдоль оси z; Vsy – скорость пробки вдоль оси y; Tb – температура корпуса; Ts – температура загружаемого материала.
Пробка гранул движется с локальной скоростью Vsz, направленной вдоль канала червяка. Скорость твердой пробки относительно поверхности (относительная скорость vj) цилиндра находится как:
(3)Введение относительной скорости Vj позволяет упростить задачу (в частности, это касается граничных условий).
Гидродинамика расплава, с учетом указанных ранее допущений, описывается следующими уравнениями движения и граничными условиями:
(4) (5)Интегрируя уравнение (4) с учетом (5), получим изменение скорости расплава в пленке в зависимости от координаты y по высоте:
(6)Рассмотрим уравнение энергии для жидкой фазы в пленке толщиной d:
(7)Граничные условия:
(8)Отметим, что все теплофизические характеристики для расплава будем обозначать индексом m (от слова melt – расплав), а для твердой фазы – s (stone – камень).
Проинтегрируем (7) с учетом (6) и (8):
(9)Уравнения (6) и (9) описывают процессы тепломассообмена в пленке расплава. Для твердой фазы уравнения энергии имеют следующий вид:
, (10) . (11)Решение уравнения (10) с учетом (11) позволяет определить изменение температуры пробки по высоте:
(12)где
Отсюда видно, что распределение температуры в пробке не зависит от координаты z, следовательно, не изменяется по длине, сохраняя один и тот же вид зависимости.
Используя уравнения (12) и (9), определим величины потоков тепла на границе раздела твердой и жидкой фаз.
(13)где l – теплота фазового перехода, Дж/кг.
Уравнение (13) связывает толщину слоя расплава d со скоростью Vsy. Для определения последних составим уравнение баланса масс в жидкой фазе.
Пренебрегая малыми величинами, будем иметь:
где w – скорость плавления материала на единичной длине канала, кг/м.
Откуда:
Подставляя уравнение (14) в уравнение (13) и выражая величину d, получим:
(15)Для скорости плавления имеем выражение:
(16)Приближаясь к решению задачи, т. е. к определению зависимости X=X(z), запишем уравнение баланса фаз, теперь для твердой фазы на участке dz и, переходя к пределу, получим уравнение:
(17)Где выражение для w(X), полученное на основании вышеизложенных выкладок, определяется уравнением (16).
Проинтегрируем уравнение (17) с учетом условия X(0)=w, для канала постоянной глубины будем иметь:
(18)Из выражения (18), положив X=0, определяем длину зоны плавления:
Для канала переменной глубины, высота которого изменяется по закону: H=Hl-A×z, где H(0)=Hl, A- угол конусности червяка, решение выглядит так:
(20)Длина зоны плавления в этом случае определится:
(21)Расчетная часть
Разработанная программа:
program Presnetsov;
Uses crt;
var i,l,s,Tg,n,m,Cs:integer;
P,Zpl,Tb,Ts,Q,LamdaM,Phi:real;
j:boolean;
f1:text;
Zav:string;
Procedure Plavlenie(j:boolean;P,Tb,Ts,Q,LamdaM,Phi:real;Zav:string;n,l,m,Cs:integer);