Смекни!
smekni.com

Расчёт на прочность закрытой цилиндрической одноступенчатой передачи и её проектирование (стр. 4 из 8)

y = (0,5…1,5) δ, (54)

где δ - толщина стенки корпуса, мм.

Тогда по формуле (54) получаем

y = (0,5…1,5) ∙ 6 = 3…9 мм.

Принимаем y = 6 мм.

Так как lСТ < b1, то размер y берем от торца шестерни.

2. Расстояние между внутренней стенкой корпуса редуктора и окружностью вершин зубьев колеса и шестерни определяется из соотношения

y1 = (1,5…3) δ, (55)

где δ - толщина стенки корпуса, мм.

Тогда по формуле (55) получаем

y1 = (1,5…3) ∙ 6 = 9…18 мм.

Принимаем y1 = 14 мм.

Для обеспечения достаточной вместимости масляной ванны картера редуктора расстояние от окружности dа2 до внутренней стенки картера ориентировочно назначаем из соотношения

y1' = (3…4) δ, (56)

где δ - толщина стенки корпуса, мм.

Тогда по формуле (56) получаем

y1' = (3…4) · 6 = 18…24 мм.

Принимаем y1' = 21 мм.

3. Длины выходных концов быстроходного l1 и тихоходного l2 валов определяются из соотношения

l = (1,5…2) dВ, (57)

где dВ – диаметр вала, мм.

Тогда длина выходного конца быстроходного вала

l1 = (1,5…2) ∙ 24 = 36…48 мм.

Принимаем . l1 = 42 мм.

Длина выходного конца тихоходного вала

l2 = (1,5…2) ∙ 28 = 42…56 мм.

Принимаем . l2 = 48 мм.

4. Назначаем тип подшипников качения для быстроходного и тихоходного валов и определяем конструктивные размеры подшипниковых узлов.

Предварительно назначаем родиальные роликоподшипники воспринемающие только радиальную нагрузку .

При значительной разнице диаметров посадочных участков валов под подшипники (d1'' = 30 мм, а d2'' = 35 мм) следует ожидать , что для тихоходного вала подойдет более легкая серия подшипника, чем для быстроходного. Здесь типоразмеры подшипников намечаем ориентировочно для возможности компоновки редуктора; в дальнейшем при подборе подшипников по динамической грузоподъемности их параметры будут уточнены.

Ориентируясь на среднюю серию подшипника для быстроходного и легкую серию для тихоходного валов, согласно рекомендациям [3, табл. П41], получаем:

d= d1′′= 30 мм, Тmax= 19 мм, D1 = 72 мм;

d= d2′′ = 35 мм, Т′′max = 17 мм, D2 = 72 мм.

Размер Х определяется по формуле

Х = 2 dП, (58)

где dП – диаметр болтов для крепления крышек подшипников к редуктору, мм.

Тогда для быстроходного вала

Х' = 2 dП' = 2 ∙ 6=12 мм.

Для тихоходного вала

Х'' = 2 dП′′ = 2 ∙6 =10 мм.

Размеры l1' и l2' определяем по формуле

l = 1,5Тmax, (59)

где Тmax – ширина подшипника, мм.

Тогда по формуле (59) получаем

l1' = 1,5 Тmax = 1,5 ∙ 19 = 28,5 мм,

l2' = 1,5 Т′′max = 1,5 ∙ 17 = 25,5 мм.

Принимаем l1' = 28 мм, l2' = 25 мм.

Расстояние от торца подшипника быстроходного вала до торца шестерни l1'' = 8…18 мм, принимаем l1'' = 12 мм. Размер l1''' = 8…18 мм, принимаем l1''' = 12 мм.

Осевой размер глухой крышки подшипника тихоходного вала l2'' = 8…25 мм, принимаем l2'' = 15 мм.

5. Определяем расстояния a1 и a2 по длине оси вала от точки приложения сил, возникающих в зубчатом зацеплении, до точек приложения опорных реакций, которые ориентировочно примем на уровне внутренних торцов подшипников в точках А и В оси вала.

Для тихоходного вала расстояние a2 определяется по формуле

a2 = y + 0,5lСТ, (60)

где y – зазор между внутренней боковой стенкой корпуса и торцом шестерни, мм;

lСТ – длина ступицы, мм.

Тогда по формуле (60) получаем

a2 = 6 + 0,5 ∙ 36 = 24 мм.

Принимаем a2 = 25 мм.

Для быстроходного вала расстояние a1 определяется по формуле

а1 = l1'' + 0,5b1, (61)

где l1'' – расстояние от торца подшипника быстроходного вала до торца шестерни, мм;

b1 – ширина венца шестерни, мм.

Тогда по формуле (61) получаем

а1 = 12 + 0,5 ∙ 39 = 31,5 мм.

Принимаем a1 = 32 мм.

6. Определяем габаритные размеры редуктора. Ширину редуктора определяем по формуле

ВР = l2 + l2' + Т′′max + y + lСТ + y+ l1'' + Тmax +l1'+ l1, (62)

где l2 – длина выходного конца тихоходного вала, мм;

где Т′′max – ширина подшипника тихоходного вала, мм;

Тmax– ширина подшипника быстроходного вала, мм;

y – зазор между внутренней боковой стенкой корпуса и торцом шестерни, мм;

lСТ – длина ступицы, мм;

l1'' – расстояние от торца подшипника до торца шестерни, мм;

l1 – длина выходного конца быстроходного вала, мм.

Тогда по формуле (62) получаем

ВР = 48+25+17+6+36+6+12+19+28+42=239 мм.

Принимаем ширину редуктора ВР = 240 мм.

Длину редуктора определяем по формуле

LР = К1 + δ + y1 + 0,5 dа2 + aw + 0,5 dа1+ y1 + δ + К1, (63)

где К1 – ширина пояса, мм;

δ – толщина стенки корпуса, мм;

y1 – расстояние между внутренней стенкой корпуса редуктора и окружностью вершин зубьев колеса и шестерни, мм;

dа1, dа2 – диаметры вершин зубьев шестерни и зубчатого колеса, мм;

aw – межосевое расстояние, мм.

Тогда по формуле (63) получаем

LР = 2∙ (13 + 6 + 14) + 0,5∙ (114 + 72) + 90 = 249 мм.

Принимаем длину редуктора LР = 250мм.

Высоту редуктора определяем по формуле

НР = δ1 + y1+ dа1 + dа2 + y11 + t, (64)

где δ1 – толщина стенки крышки корпуса редуктора, мм;

y1 – расстояние между внутренней стенкой корпуса редуктора и окружностью вершин зубьев колеса и шестерни, мм;

dа1 – диаметр вершин зубьев шестерни колеса, мм;

dа2 – диаметр вершин зубьев зубчатого колеса, мм;

y11 – расстояние от окружности dа2 до внутренней стенки картера, мм;

t – толщина нижнего пояса корпуса редуктора, мм.

Тогда по формуле (64) получаем

НР = 5 + 14 + 72+114 + 21 + 14 = 240 мм.

Принимаем высоту редуктора НР = 240 мм.


2.9 Первый этап эскизной компоновки редуктора

Этот этап эскизной компоновки имеет целью установить приближенно положение зубчатых колес относительно опор, чтобы иметь возможность определить опорные реакции и подобрать подшипники.

Эскизную компоновку ведем на одной проекции – разрезе по осям валов (в масштабе 1: 1).

Порядок вычерчивания (рис. П. 1.1).

1. Посередине листа проводим горизонтальную осевую линию – ось симметрии редуктора, затем две вертикальные осевые линии, соответствующие осям валов на расстоянии аw = 90 мм.

2. Вычерчиваем без разреза шестерню и зубчатое колесо вместе со ступицей.

3. Очерчиваем внутреннюю стенку корпуса; при этом принимаем:

а) зазор между торцом и внутренней стенкой корпуса y = 6 мм;

б) расстояние между внутренней стенкой корпуса и окружностью вершин зубьев колеса и шестерни y1 = 14 мм.

4. Размещаем подшипники валов, нанося на чертеж их габариты.

2.10 Проверка прочности валов

Прочность валов проверим по гипотезе наибольших касательных напряжений.

Быстроходный (ведущий) вал.

1.Так как быстроходный вал изготовляют вместе с шестерней, то его материал известен – сталь 45, для которой предел выносливости определяется по формуле

σ-1 = 0,43σВ, (65)

σВ – предел прочности, МПа. Согласно рекомендациям [3, табл. П3], предел прочности σВ = 700 МПа.

Тогда по формуле (65) предел выносливости

σ-1 = 0,43 ∙ 700 = 301 МПа.

2. Допускаемое напряжение изгиба при симметричном цикле напряжений, согласно рекомендациям [3, с. 195], определяется по формуле

И]-1 = [σ-1/([n]Kσ] kРИ, (66)

где σ-1 – предел выносливости, МПа;

n – коэффициент запаса прочности (n = 2,2 по [3,с.195]);

Kσ – эффективный коэффициент концентрации напряжений (Kσ = 2,2 по [3, с. 310]); kРИ – коэффициент режима нагрузки при расчете на изгиб (kРИ = 1 по [3, с. 195]).

Тогда по формуле (66) получаем

И]-1 = [σИ]-1 = [301 / (2,2 ∙ 2,2)] ∙1 = 62,1 МПа.

3. Вычерчиваем схему нагружения вала и строим эпюры изгибающих и крутящих моментов (рис 2):

а) определяем реакции опор в вертикальной плоскости zOyот сил Fr и Fа

∑МА = – Fr a1 – Fa∙0,5∙d1 + YB·2 a1 = 0, (67)

a1 – расстояние по длине оси вала от точки приложения сил, возникающих в зубчатом зацеплении, до точек приложения опорных реакций, которые ориентировочно приняты на уровне внутренних торцов подшипников в точках А и В оси вала;

Fr – радиальная сила, сжимающая зуб, Н;

Fa – осевая сила, Н

d1–делительный диаметр шестерни,мм.

Выразив из уравнения (67) YB получим

YB =

(68)

Подставив значения в уравнение (68) получим

YB =

= 200 Н.

∑МВ = – YА·2 a1 – Fa0,5d1 + Fr a1 = 0, (69)

где a1 – расстояние по длине оси вала от точки приложения сил, возникающих в зубчатом зацеплении, до точек приложения опорных реакций, которые ориентировочно приняты на уровне внутренних торцов подшипников в точках А и В оси вала;