Смекни!
smekni.com

Революция в программном обеспечении УЧПУ (стр. 2 из 3)

Поскольку у существующих СЧПУ имеются ограничения по скорости обработки (передачи) кадра управляющей программы и передачи сигнала управления к приводу, то при ВСО возможны ограничения по подаче, то есть УЧПУ может непрерывно управлять приводами лишь до определенной скорости их перемещения. Максимальную подачу, которую способна обеспечить конкретная система ЧПУ, можно определить по формуле:

Fmax = (Длина перемещения в кадре) / (Время обработки кадра) * 60.


Из приведенного отношения следует, что при перемещениях 0,01 мм и времени обработки кадра 2 мс максимальная подача ограничена значением 0,3 м/мин.

Таким образом, при организации ВСО, при определении УЧПУ выбираемого станка должны учитываться три фактора, связанные с системой управления станком:

для обеспечения непрерывного движения инструмента требуются у УЧПУ высокие скорости обработки данных (не менее 200 блоков в минуту);

система ЧПУ должна просматривать данные как минимум на 150.200 блоков вперед с тем, чтобы вычислять изменения величины подачи при подходе инструмента к острым углам (или другим подобным препятствиям) и отходе от них;

для повышения качества поверхности и снижения нагрузок на инструмент необходимо, чтобы закон изменения величины подачи имел плавный колоколообразный вид, так как причиной снижения качественных характеристик процесса являются слишком резкие ускорения при движениях по траекториям с углами.

Так, если рассмотреть характер обычной линейной интерполяции, то видно, что привода по осям подач после каждого шага интерполяции попеременно прекращают движение рабочего элемента. В связи с этим обязательным условием программирования ВСО является использование NURBS интерполяций как в процессе создания УП, так и в реализации NURBS конкретной системой ЧПУ.

Использование 3D электронных моделей обрабатываемых деталей-наиболее современный метод подготовки УП, где 3D модели есть программный продукт CAD / CAM систем. Здесь можно выделить две основные схемы. В первой из них, которая стала уже традиционной, созданная на ПК электронная модель детали обрабатывается САМ модулем. Этот модуль позволяет выбрать инструмент (инструменты), задать схемы удаления припуска, установить по заданному инструменту траектории движения этого инструмента, задать режимы обработки, выполнить массу расчетов координат различных точек по траектории движения инструмента и т.д. Созданную таким образом компьютерную УП можно визуализировать, то есть посмотреть запрограммированную обработку на мониторе ПК в виде своеобразного технического мультфильма. Естественно, по результатам просмотра программу можно отредактировать. Но созданную САМ программу нельзя сразу отправить на станок в его систему ЧПУ. Поэтому обязательно применение согласующей программы (постпроцессора), которая переводит компьютерную САМ программу в машинные коды, то есть в УП данного станка (данной УЧПУ). К любой САМ системе обычно прикладывается несколько десятков постпроцессоров (для различных моделей УЧПУ), которые и обеспечивают перевод общей САМ программы (для заданной детали) по мере надобности в УП для станков с различными моделями УЧПУ.

Применение постпроцессоров, как этапа в производственном процессе, естественно увеличивает стоимость и время разработки станочных УП, в какой-то мере ухудшает качество программы управления станком и, как следствие, приводит к ухудшению качества изготовляемых деталей.

Электронная 3D модель обрабатываемой деталикак программа для станка - новейшая схема САМ программирования. Она позволяет исключить этап использования постпроцессоров при подготовке УП для станков, устанавливая тем самым определенный новый стандарт для станкостроения. Однако, новая схема требует применения для управления станками и новых моделей УЧПУ, позволяющих вести такое программирование [].

Компьютерные УЧПУ к этим станкам содержат ПО, включающее 3D CAD / CAM систему, систему автопрограммирования и систему автотехнолога. Комбинация технологии и программного обеспечения позволяет УЧПУ напрямую использовать геометрическое определение детали как программу и исключает этап постпроцессора в цикле работ по подготовке станочных УП.

Модель в 3D формате может быть создана непосредственно в УЧПУ, либо введена извне практически из любой CAD / CAM системы. Для работы станка в автоматическом режиме после ввода 3D модели требуется ввести (в режиме диалога) лишь некоторые исходные данные по материалу заготовки и инструмента, по требуемой шероховатости и т.п. Система может интерполировать реально заданный профиль детали, управлять ускорением, точно управлять скоростью обработки, толщиной снимаемого материала, стабилизировать усилия на инструмент при обработке и др. Адаптация к режимам резания позволяет увеличить точность и сократить износ инструмента, улучшить качество обрабатываемой поверхности, при этом уменьшается стоимость обслуживания оборудования и процессов подготовки УП. Резко сокращается объем УП, оптимизируется сама УП, сокращается время обработки.

Большое количество моделей УЧПУ в представлении различных фирм требует внимательного изучения при их выборе для конкретного использования. При этом, естественно, важнейшим фактором является фактор цены при равных характеристиках, среди которых гарантии стабильности работы могут быть определяющими.

Кратко рассмотрим модели УЧПУ, представляемые на рынке РФ.

Данные моделей УЧПУ в представлении различных фирм целесообразнее всего просмотреть в информации, представляемой фирмами на своих Web-сайтах в сети Интернет. Приведенная ниже таблица поможет читателю в этом.

Классификация и виды УЧПУ

Станки с УЧПУ разделяются на:

токарные с ЧПУ (токарные, токарно-револьверные, токарно-карусельные, токарные полуавтоматы с горизонтальной осью шпинделя, токарные с вертикальной осью шпинделя, токарные - универсальные);

сверильные, расточные с ЧПУ (вертикально-сверлильные, координатно-сверлильные, станки сверлильные специальные, горизонтально-расточные, координатно-расточные);

шлифовальные, полеровальные с ЧПУ (круглошлифовальные, круглошлифовальные, плоскошлифовальные полуавтоматы, станки заточные вертикальный контурно-шлифовальный полуавтомат);

зубо- и резьбообробатывающие с ЧПУ (зубодолбежные, зубофрезерные);

фрезерные с ЧПУ (вертикально-фрезерные, продольные фрезерно-расточные, горизонтально-фрезерные для объемной обработки, фрезерный широкоуниверсальные);

и др. (строгальные, долбежные, протяжные и отрезные, также оснащенные системой ЧПУ).

Область применения

Из всех станков нового поколения оснащенных ЧПУ наиболее востребованы в машиностроении и сфере металлообработки (изготовления различных деталей типа тел вращения высокой точности, монтажных единиц для сборки в узлы) именно токарные автоматы и полуавтоматы. Токарные станки с числовым программным управлением предназначены для наружной и внутренней обработки сложных заготовок деталей типа тел вращения. Они составляют самую значительную группу по номенклатуре в парке станков с ЧПУ. На токарных станках с ЧПУ выполняют традиционный комплекс технологических операций: точение, отрезку, сверление, нарезание резьбы и др.

Большой путь модернизаций прошли станки. ЧПУ и Интернет - последние вехи его развития к совершенству. Если посетить музеи посвященные прогрессу индустрии, то невольно вызовет улыбку информация о том, какими были первые станки. ЧПУ и тем более Интернет, дополнившие сегодня эти механизмы, просто восхищают. Объединение в один механизм станок - ЧПУ способны творить чудеса. Без вмешательства человека тандем станок - ЧПУ способны выдать любую деталь с невероятной сложностью исполнения.

Станок ЧПУ это оборудование, которое имеет компьютерную оснастку, и способно по предварительно заданной программе выполнить необходимые операции без непосредственного участия человека. Используемые станки с ЧПУ в промышленном производстве резко повышают производительность труда, благодаря тому, что один оператор может обслуживать сразу несколько машин. Так же используемые станки с ЧПУ значительно повышают эргономические показатели, сокращая число травм на производстве.

Доля оборудования станки - ЧПУ в производстве всех направлений растет из года в год. Сегодня уже никому не нужны простые станки. ЧПУ - неотъемлемая часть любого станка. Обусловлено это большими экономическими показателями: значительным сокращением обслуживающего персонала и улучшением качества выпускаемой продукции. Кроме того на крупных промышленных предприятиях, где используются станки с ЧПУ в больших количествах возможно объединенное управление всеми машинами из одного диспетчерского пульта посредством гибкой автоматизации производственной системы - ГПС.

Практически на любом предприятии необходимы обрабатывающие станки. ЧПУ, если данные станки оборудованы этим обеспечением, способны считывать инструкцию процесса работы со специального языка программирования и управлять приводами станка и всей оснасткой.

Станки с ЧПУ основаны на микропроцессорах с оперативной памятью, операционной системой и микроконтроллерах. Работы, где необходима точность до микрона, не способен выполнить ни один простой станок. ЧПУ позволяет производить работу с невероятной точностью, притом, что его работа практически не связана с человеческим фактором.