Смекни!
smekni.com

Режимы работы асинхронных двигателей (стр. 2 из 3)

Максимальный момент М*max характеризует перегрузочную спо­собность двигателя. Если момент сопротивления превышает М*max, двигатель останавливается. Поэтому М*max называют также критиче­ским, а скольжение, при котором момент достигает максимума, — критическим скольжением sкp. Обычно sкрне превышает 0,1...0,15; в двигателях с повышенным скольжением (крановых, металлургиче­ских и т. п.) sкpможет быть значительно большим.

В диапазоне 0 < s < sкрхарактеристика М - f(s) имеет устойчи­вый характер. Она является рабочей частью механической характе­ристики двигателя. При скольжениях s > sкр двигатель в нормаль­ных условиях работать не может. Эта часть характеристики определяет пусковые свойства двигателя от момента пуска до выхо­да на рабочую часть характеристики.

Трансформаторный режим, т. е. режим, когда обмотка статора подключена

к сети, а ротор неподвижен, называют также режимом

Рис. 2.2. Зависимость тока и момента

асинхронного двигателя от скольжения

короткого замыкания двигателя. При s= 1 ток двигателя в несколь­ко раз превышает номинальный, а охлаждение много хуже, чем при номинальном режиме. Поэтому в режиме короткого замыкания асинхронный двигатель, не рассчитанный для работы при скольже­ниях, близких к единице, может находиться лишь в течение нескольких секунд.

Режим короткого замыкания возникает при каждом пуске двигателя, однако в этом случае он кратковременен. Несколько пусков двигателя с короткозамкнутым ротором подряд или через короткие промежутки времени могут привести к превышению до­пустимой температуры его обмоток и к выходу двигателя из строя.

3. АНАЛИТИЧЕСКОЕ И ГРАФИЧЕСКОЕ ОПРЕДЕЛЕНИЕ РЕЖИМОВ РАБОТЫ АСИНХРОННОЙ МАШИНЫ

Электромеханическое преобразование энергии может происхо­дить в асинхронной машине в следующих трех режимах:

в режиме двигателя 0 < s < l, Ω1 > Ω > 0;

в режиме генератора s < 0, Ω > Ω1;

в режиме тормоза s > 1, Ω < 0.

Кроме того, важны еще два характерных режима работы, в ко­торых электромеханическое преобразование энергии не происходит: режим идеального холостого хода (s = 0, Ω = Ω1) и режим корот­кого замыкания (s = 1, Ω = 0).

В режиме двигателя (область Д на рис. 3.2) под воздействием электромагнитного момента Μ > 0, направленного в сторону поля, ротор машины вращается в сторону поля со скоростью, мень­шей, чем скорость поля (Ω1 > Ω > 0, 0 < s < 1). В этом режиме

Ρэм = ΜΩ1=

>0; Ρмех = ΜΩ=Ρэ2
>0.

Электрическая мощность Р1= Рэм+ Рм+ Рэ1 > 0 преобра­зуется в механическую мощность Р2 = РмехΡдΡΊ> 0, пере­даваемую через вал приводимой в движение машины.

Энергетические процессы в режиме двигателя иллюстрируются рис. 3.1, а, на котором направление активной составляющей тока ротора iсовпадает с индуктированной в роторе ЭДС. Направление электромагнитного момента Μ определяется электромагнитной силой Bmi2a, действующей на ток i2a.

Полезная механическая мощность Р2оказывается меньше по­требляемой из сети мощности на потери ΣΡ:

Ρ2 = Ρ1-ΣΡ = Ρ1 -(Ρэ1 + Ρмэ2 + Ρд + Ρт),

И КПД двигателя выражается формулой:

η=

= 1-
= f(s)

В режиме генератора (область Г на рис. 3.2) под воздействием внешнего момента Мв > 0, направленного в сторону поля (рис. 3.1, б), ротор машины вращается со скоростью, превышаю­щей скорость поля (Ω > Ω1, s < 0). В этом режиме в связи с изме­нением направления вращения поля (Ω^) относительно ротора активная составляющая тока ротора г' изменяет свое направление иа обратное (по сравнению с двигательным режимом). Поэтому электромагнитный момент Μ = Bmi2a, уравновешивающий внешний момент, направлен против поля и считается отрицательным < 0), мощности Рэ„ и Ртхтакже отрицательны:

Ρэм = ΜΩ1=

< 0; Ρмех = ΜΩ=Ρэ2
< 0.

Рис. 3.1. Режимы работы асинхронной машины.

а — двигательный;

б — генераторный;

в — тормоза;

г — трансформатора (или короткого замыкания).


Направление преобразования энергии изменяется на обратное: механическая мощность Рг, подведенная к валу машины, преоб­разуется в электрическую мощность Pltпоступающую в сеть. Поскольку мощность потерь всегда положительна (в любом режиме работы эти мощности превращаются в тепло), механическая мощность:

Ρмех =Ρэм - Ρэ2 < 0 приs < 0

по абсолютному значению больше, чем электромагнитная (рис. 3.2):

|Ρмех| = | Ρэм | + Ρэ2

Рис. 3.2. Электромеханические характеристики асинхронной машины (в отно­сительных единицах при 1/х = 1; /0 = 0,364; cos <р0 = 0,185; Хг= Х'2= 0,125; Кг= 0,0375; R's = 0,0425).

По той же причине потребляемая механическая мощность

P2 = P1 - ΣΡ < 0

по абсолютному значению на потери больше электрической мощнос­ти, отдаваемой в сеть:

|Ρ2| = | Ρ1 | + ΣΡ,

и КПД генератора

η=

= 1-
.

В режиме тормоза (область Т на рис. 3.2) под воздействием внешнего момента Мв< 0, направленного против вращения поля (рис. 3.1, в), ротор машины вращается в сторону, противоположную полю (Ω<0, s =

>1). В этом режиме электромагнитный момент М, уравновешивающий внешний момент, как и в режиме двигателя (направление вращения поля Ω.5относительно ротора остается таким же, как в режиме двигателя), направлен в сторону поля и считается положительным (М > 0). Однако, поскольку Ω < 0, механическая мощность оказывается отрицательной:

Ρмех = ΜΩ=Ρэ2

< 0

Это означает, что она подводится к асинхронной машине. Электро­магнитная мощность в этом режиме положительна:

Ρэм = ΜΩ1=

>0

Это означает, что она поступает из сети в машину.

Подведенные к ротору машины со стороны сети |Ρэм| и вала |Ρмех| мощности превращаются в электрические потери Рэ2 в сопро­тивлении ротора R'2(рис. 3.2):

|Ρмех| + | Ρэм | = Ρэ2

+ Ρэ2
= Ρэ2 = m1R'2(I '2)2 .

Асинхронная машина в этом режиме может быть использована для притормаживания опускаемого подъемным краном груза. При этом мощность | Ρмех | = | ΜΩ | поступает в ротор машины (см. рис. 3.1).

В режиме идеального холостого хода внешний вращающий мо­мент Μв, момент трения Μт= Ρт/Ω и момент, связанный с добавоч­ными потерями, Мд = Ρд/Ω равны нулю. Ротор вращается со ско­ростью поля (Ω = Ω1, s = 0) и не развивает полезной механической мощности = 0, Рмех = ΜΩ = 0).

В режиме идеального холостого хода внешний момент, прило­женный к валу машины, равен нулю (Мв = 0). Считается также, что отсутствует момент от трения вращающихся частей. Ротор машины вращается с той же угловой скоростью, что и вращающееся поле (Ω = Ω1), скольжение равно нулю (s = 0); ЭДС и токи в обмотке ротора не индуктируются(I2=0), и электромагнитный момент, уравновешивающий внешний момент и момент сил трения, равен нулю (М = 0).