де ρ – густина рідини, кг/м3;
λ – коефіцієнт гідравлічного тертя по довжині;
l,d – довжина і діаметр трубопроводу, м;
Vф – середня швидкість течії рідини, м/с.
Коефіцієнт гідравлічного тертя (коефіцієнт Дарсі) визначаємо, виходячи з режиму руху рідини і відносної шорсткості труби ΔЕ/d, де ΔЕ – еквівалентна шорсткість (∆Е=0,06 мм).
Режим руху рідини визначають за числом Рейнольдса
(3.9)де V – фактична швидкість у всмоктувальному, напірному чи зливному трубопроводі, м/с;
d – діаметр трубопроводу, м;
– кінематичний коефіцієнт в’язкості, м2/с.Розрахунок Reдля ділянок трубопроводу:
для всмоктувальної гідролінії
- режим ламінарний;для напірної гідролінії
- режим турбулентний;для всмоктувальної гідролінії
- режим ламінарний.Якщо рух ламінарний, коефіцієнт гідравлічного тертя визначаємо за формулою
(3.10)Для труб промислового виготовлення з природною шорсткістю для будь-якої області опору можна скористатися формулою Альтшуля
(3.11)Коефіцієнт Дарсі на ділянках трубопроводу:
у всмоктувальній гідролінії:
у зливній:
у напірній:
Втрати тиску
(Па) на тертя по довжині трубопроводу: ; (3.12)на всмоктувальній лінії:
; (3.13) ;на напірній лінії:
; (3.14) ;на зливній лінії:
; (3.15) .Загальні втрати тиску на тертя по довжині трубопроводу:
Місцеві гідравлічні втрати ΔРМ(Па) визначаємо за формулою Вейсбаха
(3.16)де ζ – коефіцієнт місцевого опору;
V – середня швидкість у місці перерізу з місцевим опором, м/с;
ρ – щільність рідини, кг/м3.
Місцеві гідравлічні втрати ΔРМ(Па):
. (3.17)на всмоктувальній лінії:
(3.18)на напірній лінії:
(3. 19)на зливній лінії:
(3. 20)Загальні втрати тиску на тертя по довжині трубопроводу:
Втрати в гідроапаратурі:
(3.21) (3.22)втрати у дроселі:
втрати у розподільнику на зливній лінії:
(3.23)втрати у розподільнику на напірній лінії:
(3.24)втрати у фільтрі:
(3.25)Загальні втрати тиску в гідроапаратурі:
Знаходимо сумарні втрати тиску у всмоктувальній, напірній та зливній гідролініях (підставляємо отримані дані у формулу 3.7):
Сумарні втрати тиску не повинні перевищувати 20% тиску, що розвивається насосом. Перевіримо це:
6,3∙0,2=1,26(МПа).
Оскільки сумарні втрати тиску не перевищують допустимі насосом (0,34 МПа <1,26 МПа), то умова виконується.
Необхідний тиск насоса РН обчислюють за рівнянням
(4.1)де
- сумарні втрати тиску в гідролініях, Па;F – зусилля на штоку гідро циліндра, Н;
Se – ефективна площа поршня, м2;
ηМЦ – механічний к. к. д. циліндра.
Тип насоса вибираємо відповідно до значень необхідної подачі QH=70,62 л/хв і розрахункового тиску РН=5,9 МПа у літературі [2, с.18, табл.2.1; с.30, табл.2.5; с.34, табл.2.7; с.38, табл.2.9].
Вибираємо насос пластинчатий нерегулюємий Г12-24М ГОСТ 13167-82 (Робочий об’єм 80 см3, номінальна подача 70 л/хв=0,001167 м3/с, к. к. д. при номінальному режимі роботи 0,82; тиск на виході з насосу: 6,3 МПа, граничний 7 МПа).
Гідроклапан тиску вибираємо за значеннями необхідного тиску насоса РН=5,9 МПа і подачі вибраного насоса QH=70,62 л/хв [2, с.124, табл.5.3].
Вибрали гідроклапан Г54-34М
Витрата масла: номінальна 125 л/хв;
максимальна 160 л/хв;
мінімальна 3 л/хв.
Тиск налаштунку (МПа): номінальний 1; 2,5; 6,3; 10 або 20;
максимальна 1,2; 2,8; 7; 11,2 або 23;
мінімальна 0,3; 0,4; 0,6; 1,2 або 4.
Ефективну (корисну) потужність NП,Вт, гідроциліндра визначаємо за формулою
(5.1)де F– зусилля на поршні, Н;
VП – швидкість поршня гідро циліндра, м/с.
Повна потужність N, Вт, гідропривода дорівнює потужності, спожитої насосом:
(5.2)де
– розрахований тиск насоса, Па; – подача вибраного насоса, м3/с; – повний к. к. д. вибраного насоса.Повний к. к. д. гідропривода
(5.3)1. Герман В.Ф., Кулі ніч П.Г. Методичні вказівки до курсової роботи з курсу «Гідравліка та гідропневмоприводи», СумГУ, 2002.
2. Свешников В.К., Усов А.А. Станочные гидроприводы. – М.: Машиностроение, 1988. – 512 с.
3. Вильнер Я.М., Ковалёв Я.Г., Некрасов Б.Б. Справочное пособие по гидравлике, гидромашинам и гидроприводам. – Минск: Высшэйш. шк., 1976. – 410 с.