Смекни!
smekni.com

Роль нанотехнологии в создании более эффективных преобразователей энергии (стр. 5 из 5)

Более высокая удельная энергия при взрыве открывает принципиально новые возможности для использования пористого кремния. На рис. 3 показаны этапы процесса разделения кремниевой пластины на отдельные чипы при помощи взрыва слоя пористого кремния. По сравнению с традиционными методами лазерного и алмазного разделения кремниевых пластин данный метод имеет ряд преимуществ:

* ширина разделительной дорожки может быть уменьшена до 40 мкм; * при помощи этого метода можно вырезать кремниевые кристаллы любой формы, в том числе и круглые и овальные, так как линия разреза формируется при помощи операций фотолитографии.

К другим возможным практическим применениям процесса взрыва пористого кремния следует отнести изготовление самоуничтожающихся кремниевых чипов, а также экологически безопасных пиротехнических схем.

Следует отметить, что наноструктурированный кремний является энергоносителем, альтернативным углеводородным видам топлива. В частности, кремень, использовавшийся в древности как источник огня, есть не что иное, как наноструктурированное минеральное образование из кварца и халцедона. Минерал халцедон отличается от кварца нестехиометричностью состава – повышенным массовым содержанием водорода, т.е. этот минерал является “недоокисленным” по сравнению с кварцем, что и объясняет его необычные свойства, позволяющие его микрочастицам воспламеняться после механического воздействия.


9. Приложение

Новые эффекты, возникающие в нанокомпозитах: Электростатические эффекты разделения зарядов в нанокомпозитах металл (рутений) – оксид (Li2O), J.Maier, Nature materials, vol.4, 2005)

Новые эффекты, возникающие в нанокомпозитах:поведение «ионной жидкости» («шарики» и «ионы»), распределенной в прочной нанопористой непроводящей матрице (обозначено зеленым цветом). (J.Maier, Nature materials, vol.4, 2005)

Различные формы MnO2 для марганец-цинковых батареек (Journal of Solid State Chemistry 179 (2006) 1757–1761)


Уникальные нанотрубки на основе MnO2 для химических источников тока (Adv. Mater. 2005, 17, 2753–2756).

Нанотрубки пентаксида ванадия, полученные гидротермальным методом (Факультет Наук о Материалах МГУ)

Аккумуляторная батарейка фирмы Toshiba, содержащая наночастицы.

Частицы диоксида титана TiO2 различного размера для использования в литий-ионных аккумуляторах нового поколения (Adv. Mater. 2006, 18, 1421–1426).

Аккумулятор Nanosafe, содержащий наночастицы диоксида титана.

Нанопористая структура композита «LiFePO4 - углерод» (Solid State Ionics 176 (2005) 1801 – 1805).

Кристаллическая структура минерала оливина.

Интеркаляция лития в структуру фосфата железа.


Модель американского Белого Дома, «напечатанная» с помощью технологии трехмерной струйной печати с использованием чернил, содержащих высокодисперсные частицы.

Жидкостный наногенератор

Солнечная нанобатарея


Так выглядит основа новой нанобатареи — кристалл теллурида кадмия

Кремниевый микроактюатор, использующий энергию горения пористого кремния для перемещения в пространстве

Метод лазерного и алмазного разделения кремниевых пластин


Фрагменты поведения шарообразной вспышки при взрыве наноструктурированного гидрированного кремния, пропитанного KNO3


10. Литература

1. www.nanonewsnet.ru

2. www.paramatma.ru

3. www.cnews.ru

4. www.nanometer.ru

5. www.rian.ru

6. www.ng.ru

7. Р.С. Ерофеев. Роль нанотехнологии в создании более эффективных преобразователей энергии. Нанотехника. № 3, 2005 г.