Смекни!
smekni.com

Сбор и подготовка попутного газа на Барсуковском месторождении (стр. 6 из 7)

Для сведения потерь нефти к минимуму, так же используют сетчатые газосепараторы, которые ни только не уступают по характеристикам вышеприведенному сепарационному обрудованию, но и имеют ряд преимуществ, среди которых окончательная тонкая очистка природного и попутного нефтяного газа от жидкости в промысловых установках подготовки газа к транспорту, подземных хранилищах, а также на газо- и нефтеперерабатывающих заводах.

5.1 Газосепаратор сетчатый

Газосепараторы сетчатые (ГОСТ 29-02-2058-79) предназначены для окончательной тонкой очистки природного и попутного нефтяного газа от жидкости (конденсата, ингибитора гидрато- образования, воды) в промысловых установках подготовки газа к транспорту, подземных хранилищах, а также на газо- и нефтеперерабатывающих заводах.

Эффективность очистки газа – до 99 %. Температура рабочей среды – от

-30 до +100 °С. Содержание жидкости, поступающей в газосепаратор с газом - не более 200 см3/нм3. По индивидуальному заказу изготавливаются газосепараторы, предназначенные для очистки газа с более высокой концентрацией примесей и диаметром до 2400 мм.

Газосепараторы изготавливаются в двух материальных исполнениях на рабочее давление от 0,6 до 8 МПа, для эксплуатации в районах со средней температурой самой холодной пятидневки до минус 40 °С – исполнение 1; ниже минус 40 °С до минус 60 °С – исполнение 2.

Предусмотрены три типа сетчатых газосепараторов: тип I(рисунок. 5.4) –цилиндрические вертикальные с корпусным фланцевым разъёмом диаметром 600, 800мм на рабочее давление от 0,6 до 8 МПа и производительностью по газу от 0,08 до 0,8 млн. м3/сут; тип II– цилиндрические вертикальные диаметром 1200, 1600 мм на рабочее давление от 0,6 до 8 МПа и производительностью по газу от 0,8 до 2 млн. м3/сут; тип III– шаровые с цилиндрическим сборником жидкости диаметром сферы 2200, 2600 мм на рабочее давление от 1 до 8 МПа и производительностью по газу от 2 до 5 млн. м3/сут.


Рисунок. 5.4. Сетчатый сепаратор типа I

1 –днище; 2 – насадка; 3 –коагулятор; 4 – обогреватель;

5 – опора; 6 – место заземления; 7 – корпус

I– верхний предельный уровень; II– нижний предельный уровень

Газожидкостная смесь в сетчатом газосепараторе разделяется на газ и жидкость благодаря воздействию гравитационных и инерционных сил на капли жидкости. Основная масса жидкости сепарируется из газового потока в средней части корпуса и осаждается вниз в сборник жидкости. Тонкодисперсные капли коагулируются в сетчатом каплеотбойнике, размещённом в средней части корпуса, и частично стекают вниз в сборник жидкости. Окончательная очистка газа от жидкости осуществляется в сетчатой скрубберной секции, размещаемой в верхней части корпуса сепаратора, откуда отсепарированная жидкость дренируется под уровень жидкости в сборнике. Из сборника жидкость непрерывно или периодически сбрасываются [4].


6. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ СЕТЧАТОГО ГАЗОВОГО СЕПАРАТОРА

6.1 Исходные данные

Для проведения технологического расчета необходимы следующие данные: максимальный расход газа Qmax=19627 м3/сут; рабочее давление Р = 0,6 МПа; рабочая температура Т= 313 К ; плотность газа в рабочих условиях ρг=0,256 кг/м3; плотность жидкости в рабочих условиях ρж=850 кг/м3; коэффициент поверхностного натяжения в рабочих условиях σ =15,21*10-3Н/м; начальное содержание жидкости в газа е0=160см3/нм3, содержание жидкости на выходе из сепаратора (унос) – 0,1 г/м3 [6].

Эскиз конструкции сетчатого газосепаратора представлен на рисунке 6.1.Расчет элемента заключается в определении его расчетной площади и конструктивных размеров.


Рисунок 6.1 Эскиз конструкции газосепаратора сетчатого.

6.2 Расчет сепарационного элемента

6.2.1 Расчетная площадь

Для сетчатой насадки это ее площадь в сечении перпендикулярному направлению потока.

, м2

м2

Объемный расход газа

, м3

м3

где Qmax-максимальный объемный расход газа в нормальных условиях, м3/сут;

Р-давление, кгс/см2, Р0=1,033 кгс/см2;

Т-температура, К, Т0=273 К;

z-коэффициент сжимаемости, z0=1,0;

Критическая скорость

,м/с

м/с

где Сt-коэффициент, учитывающий влияние температуры газа на критическую скорость газа, Сt=1,0

Се- коэффициент, учитывающий влияние начального содержания жидкости на критическую скорость газа;

К-коэффициент устойчивости режимов течения газожидкостной смеси;

-поверхностное натяжение на границе раздела между газом и жидкостью, Н/м;

ж -плотность жидкости, кг/м3;

г-плотность газа, кг/м3;

Так как е0=160 см3/нм3, следовательно Се=1,75/1600,107=1,02

6.2.2 Конструктивные размеры сепарационного элемента (насадки)

Диаметр сетчатой насадки

, м
м

Расчетный диаметр округляется до ближайшего большего значения из ряда по ГОСТ 9617-76 для сетчатой насадки – 0,179; 0,245; 0,374. Принимаем D=0,245м.

Конструктивные размеры вертикальной сетчатой насадки находятся одновременно с определением диаметра жидкости сборника жидкости.

6.3 Расчет сборника жидкости

Расчет сборника жидкости сепаратора заключается в определении его расчетного объема и конструктивных размеров. За расчетный принимают объем сборника до верхнего предельного уровня без учета объема днищ.

Расчетный объем

3

м3

где

-время пребывания жидкости в сборнике сепаратора, мин

Объемный расход жидкости


, м3

м3

где е0-содержание жидкости в газе на в ходе в аппарат, см33;

Qmax-максимальный расход газа,м3/с.

Время пребывания жидкости в сборнике сепаратора принимается:

-для непенистых жидкостей-

3мин

-для пенистых жидкостей – в каждом конкретном случае определяется опытным путем с учетом требований технологического процесса.

Расчетная высота (длина) сборника, т.е. длина цилиндрической части

, м

м

где F-площадь смоченного периметра сборника жидкости в сечении, перпендикулярном его оси, м2.

м2

где Dв- внутренний диаметр сборника жидкости.

Расчетная длина Lсб совмещенного сборника жидкости сетчатого сепаратора (рисунок 6.2) округляется до ближайшей большей величины кратной 100мм. Принимаем Lсб=1,1 м.


6.4 Расчет технологических штуцеров входа и выхода газа выхода жидкости

Диаметр штуцера входа и выхода газа

, м

м

где Wг-скорость газа в штуцере, м/с. Принимается Wг=14,5 м/с.

Диаметр штуцера (внутренний) выхода жидкости

, м

м

где Wж-1,0

2,0-скорость жидкости в штуцере.

Расчетный диаметр штуцера округляется до ближайшего большего из ряда условных диметров, при этом диаметр штуцера выхода жидкости рекомендуется принимать не менее dу=50мм. Принимаем dж=0,05 м.

6.5 Расчет сливных труб

При расчете необходимой площади слива сливных труб количество жидкости, попадающей в сборник жидкости сепаратора по сливным трубам.