Смекни!
smekni.com

Сварка латуни (стр. 1 из 2)

Министерство образования РФ


Курсовая работа

по теме:

«Сварка латуни»

Выполнил: Овчинников Е. В.

Проверила: Ишмуратова А.

2007 г.

Содержание

Введение 3

Сварка латуни 5

Используемая литература 9

Введение

Сваркой называется процесс получения не­разъемных соединений посредством установле­ния межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или со­вместным действием того и другого.

Определение сварки относится к металлам и неметаллическим материалам (пластмассы, стекло, резина и т. д.).

Свойства материала определяются его внут­ренним строением — структурой атомов. Все металлы в твердом состоянии являются телами с кристаллической структурой. Аморфные тела (стекло и др.) имеют хаотическое расположение атомов. Для соединения свариваемых частей в одно целое нужно их элементарные частицы (ионы, атомы) сблизить настолько, чтобы меж­ду ними начали действовать межатомные связи, что достигается местным или общим нагре­вом или пластическим деформированием или тем и другим.

В зависимости от условий, при которых осу­ществляется сваривание (образование межатом­ных связей) частиц металла, различают свар­ку плавлением и сваркудавле­нием.

Сущность сварки плавлением (рисунок 1) со­стоит в том, что металл по кромкам сваривае­мых деталей 1и 2подвергается плавлению от нагрева сильным концентрированным источни­ком тепла: электрической дугой, газовым пла­менем, химической реакцией, расплавленным шлаком, энергией электронного луча, плазмой, энергией лазерного луча. Во всех этих случаях образующийся от нагрева жидкий металл од­ной кромки самопроизвольно соединяется с жидким металлом другой кромки. Создается общий объем жидкого металла, который назы­вается сварочнойванной. После за­стывания металла сварочной ванны получается металл шва 4. Металл шва может образоваться только за счет переплавления металла по кром­кам 3или дополнительного присадочного ме­талла, введенного в сварочную ванну.



а – детали перед сваркой; б – детали после сварки

Рисунок 1 – Схема соединения деталей сваркой плавлением

Зона частично оплавившихся зерен металла на границе кромки свариваемой детали и шва называется зоной плавления; в этой зоне дости­гается межатомная связь. При этом металл шва тесно соприкасается с металлом сваривае­мых частей, а загрязнения, находившиеся на по­верхностях свариваемых частей, всплывают на­ружу, образуя шлак.

Сущность сварки давлением состоит в пластическом деформировании металла в ме­сте соединения под действием силы Р. Находя­щиеся на соединяемых поверхностях различные загрязнения вытесняются наружу, а поверхно­сти свариваемых частей будут чистыми, ровны­ми и сближенными по всему сечению на расстоя­ние атомного сцепления. Зона, в которой уста­новилась межатомная связь, называется зоной соединения. Ширина зоны соединения измеря­ется десятками микрон.

Пластическую деформацию кромок деталей осуществить легче, если нагревать место со­единения. Источником тепла (при сварке с мест­ным нагревом) служит электрический ток, газо­вое пламя, химическая реакция, механическое трение; при сварке с общим нагревом — куз­нечный горн, нагревательная печь.

Процесс сварки делят на три класса (ГОСТ 19521—74): термический, термомехани­ческий и механический. Термический класс объ­единяет виды сварки, осуществляемые плавле­нием металла. Термомеханический класс вклю­чает виды сварки, осуществляемые давлением с использованием тепловой энергии. К меха­ническому классу относятся виды сварки, вы­полняемые давлением с дополнительной меха­нической энергией.

Сварка по виду применяемой энергии под­разделяется на следующие основные виды:

давлением с общим нагревом: кузнечная, прокаткой, выдавливанием;

давлением с местным нагревом: контактная, индукционно-прессовая, термитно-прессовая, газопрессовая, диффузионная, дуто-прессовая;

давлением без нагрева металла внешним ис­точником тепла; ультразвуковая, холодная, тре­нием, взрывом, магнитноимпульсная;

плавлением: дуговая, газовая, термитная, электрошлаковая, электронно-лучевая, лазер­ным лучом, плазменная.

Сварка латуни

Латунь представляет собой сплав меди с цинком; температура плавления латуни 800—1000 °С.

При дуговой сварке из латуни интенсивно испаряется цинк; расплавленный металл поглощает водород, который не успевает выде­литься при затвердевании жидкого металла в сварочной ванне, в результате чего в шве обра­зуются газовые поры. Водород попадает в сва­рочную ванну из покрытия, флюса или воздуха.

Сварка латуней покрытыми электродами находит ограниченное применение, в основном для исправления брака литья. Это объясняется сильным испарением цинка при дуговой сварке по сравнению с газовой сваркой, дуговой под флюсом или дуговой в защитном газе.

Для дуговойсварки латуни применяют электроды с покрытием ЗТ, разработан­ные Балтийским заводом в Ленинграде. Состав электрода следующий: стержень из кремнемарганцовистой бронзы Бр. КМц 3-1, содержащей 3 % кремния и 1 % марганца; покрытие из 17,5 % марганцовой руды, 13 % плавикового шпата, 16 % серебристого графита, 32 % ферросилиция 75 %-ного, 2,5 % алюминия в порошке. Сварка ведется постоянным током при обратной по­лярности короткой дугой с целью снижения выгорания цинка. От вытекания металла стык защищают прокаленной асбестовой подклад­кой с обратной стороны стыка. При толщине листов до 4 мм сварку ведут без разделки кро­мок. При толщине листов более 4 мм разделка кромок такая же, как и для стали. После сварки шов проковывают, а затем отжигают при 600—650°С для выравнивания химического со­става и придания металлу мелкозернистой струк­туры.

Сварку латуни можно выполнять угольным электродом на постоянном токе при прямой полярности с применением флюсов.

При сварке латуни угольным электродом используют флюсы. Наибольшее распростра­нение получил флюс БЛ-3 состава: 35 % криоли­та, 12,5 % хлористого натрия, 50 % хлористого калия, 2,5 % древесного угля.

Режимы сварки латуни угольным электродом представлены в таблице 1.

Таблица 1 – Режимы сварки латуни угольным электродом

Толщина металла,

мм

Диаметр угольного

электрода, мм

Диаметр присадочного стержня, мм

Сварочный ток,

А

3

5

10

14-16

6

10

18

20

4

6

8

10

180-200

240-270

400-450

450-550


Латунь толщиной до 10 мм сваривают без подогрева, более 10 мм — с подогревом до 300—350°С.

Газоваясварка латуней обеспечи­вает лучшее качество сварных соединений, чем дуговая покрытыми электродами. Для уменьшения испарения цинка сварку латуни ведут окислительным пламенем; при этом на поверх­ности сварочной ванны образуется жидкая пленка окиси цинка, препятствующая его испа­рению. Избыточный кислород окисляет часть водорода пламени и поглощение жидким ме­таллом водорода уменьшается.

Газовую сварку широко используют для сварки латуни, которая труднее поддается сварке электрической дугой. Основное затруднение при сварке состоит в значительном испарении из латуни цинка, которое начинается при 900С. Если латунь перегреть, то вследствие испарения цинка, шов получится пористым. При газовой сварке может испаряется до 25% содержащегося в латуни цинка.

Для уменьшения испарения цинка сварку латуни ведут пламени с избытком кислорода до 30-40%.

Для удаления окислов меди и цинка при газовой сварке пользуются флюсами того же состава, что и при дуговой сварке меди угольным электродом.

Для уменьшения испарения цинка и погло­щения сварочной ванной водорода конец ядра пламени должен находиться от свариваемого металла на расстоянии в 2—3 раза большем, чем при сварке стали.

Для газовой сварки латуней ВНИИавтогенмаш разработал присадочную проволоку марки ЛК 62-0,5 (ГОСТ 16130—72), содержащую 60,5— 63,5 % меди, 0,3—0,7 % кремния, остальное — цинк. В качестве флюса при сварке этой приса­дочной проволокой применяют прокаленную буру.

ВНИИавтогенмаш для сварки латуней раз­работал самофлюсующую присадочную про­волоку ЛКБ062-02-004-05 (ГОСТ 16130—72), содержащую 60,5—63,5'/, меди, 0,1—0,3 % крем­ния, 0,03—0,1 % бора, 0,3—0,7 % олова, осталь­ное — цинк. Бор, входящий в состав проволоки, выполняет функции флюса. Применение дру­гого флюса при сварке этой проволокой не тре­буется.

Хорошее качество газовой сварки латуней достигается применением флюса БМ-1 (раз­работан ВНИИавтогенмаш), состоящего из 25 % метилового спирта и 75 % метилбората, или флюса БМ-2, состоящего из одного метилбора­та. Эти флюсы вводятся в сварочную ванну в виде паров. Ацетилен пропускается через жид­кий флюс, находящийся в особом сосуде (флюсопитателе), насыщается парами флюса и пода­ется в горелку. В пламени флюс сгорает по реак­ции