Различают 3 вида отпуска по температуре: низкий, средний и высокий.
Низкий отпуск 150-220 градусов
Средний отпуск 350-450 градусов
Высокий отпуск 550-650 градусов
Низкий отпуск применяется для деталей, которые должны иметь высокую твердость и прочность. При низком отпуске мартенсит закалки превращается в мартенсит отпуска. Мартенсит отпуска отличается от мартенсита закалки отсутствием внутренних напряжений за счет выделения из него избытка углеводорода в виде мельчайших карбидов. Твердость мартенсита отпуска такая же или немного больше, чем у мартенсита закалки (58 – 62 HRC).
Средний отпуск проводится для деталей, в которых требуется максимальный предел упругости. При температурахсреднего отпуска происходит распад остаточного аустенита в мартенсит, и затем переход мартенсита в троостит. Троостит представляет собой игольчатую структуру феррита, вдоль игл которого расположены выделившиеся из твердого раствора мелкие карбиды. Такая структура обладает малым запасом вязкости, но зато высоким пределом упругости. Поэтому такой вид отпуска применяют для изготовления упругих деталей машин. Твердость 40 – 45НRС и очень маленькая ударная вязкость.
Высокий отпуск применяется для деталей, в которых необходимо сочетание высокой ударной вязкости и достаточной прочности – это детали машин, работающие с ударными и знакопеременными нагрузками. При этом образуется сорбит. Сорбит представляет собой зёрна феррита с огромным количеством точечных и округлых выделений карбидов, равномерно распределенных по объему стали. Твердость 20 –25 НRС.
Сочетание полной закалки и высокого отпуска называется термическим улучшением стали. Такой термообработке обычно подвергают стали содержащие 0,3 = 0,6 %С. Поэтому такие стали часто называют улучшаемыми.
Выбор того или иного вида отпуска зависит от назначения детали. Если деталь должна обладать максимальной твердостью и износостойкостью, то соответственно твердость поверхности должна быть максимальной и для такой детали всегда применяют закалку с низким отпуском. Если же на первое место по техническим условиям выходит максимальная вязкость, то применяют закалку с высоким отпуском. Средний отпуск в большинстве случаев используют при изготовлении пружины. В некоторых случаях при быстром охлаждении деталей после горячей деформации возникает эффект увеличения твердости за счет получения неравновесных структур типа троостит или бейнит. Такая сталь с трудом поддается обработке резанием, поэтому для снижения твердости её подвергают высокому отпуску при температуре600-700º С с медленным охлаждением. Чаще всего это высокоуглеродистая сталь или сталь, содержащая легирующие элементы.
4) Какой вид термообработки и почему рационально применять для заданной стали
Для доэвтектоидной стали в основном применяют полный отжиг. При таком отжиге происходит полная смена структуры стали, что позволяет устранить все дефекты, вызванные холодной деформацией, сваркой, резкой и так далее.
Полный отжиг
Производится с нагревом стали до температуры, превышающей точку А3 с последующим медленным охлаждением вместе с речью. Медленное охлаждение вызывает полное равновесное превращение АФ + П. В результате получается максимально возможная пластичность, минимальная твердость и прочность и полное снятие внутренних напряжений. Если внутренние направления не имеют значения то после охлаждения с печью до 5000, дальнейшее охлаждение можно вести на воздухе. Полный отжиг применяют для устранения дефектов структуры, вызванных литьем, холодной деформацией, сваркой.
Основной недостаток полного отжига – это его большая продолжительность, возможная неравномерность зеренного строения в центре и на поверхности крупногабаритных изделий, вызванная неодинаковой скоростью охлаждения.
3. Для некоторых деталей выбрана легированная сталь марки ШХ9
1) Расшифруйте состав, определите группу стали по назначению, назовите детали, изготавливаемые из этой стали.
Шарикоподшипниковая сталь, содержащая 0,9 % хрома
Химический состав в % материала ШХ9
C | Si | Mn | Ni | S | P | Cr | Cu |
0.95 - 1.05 | 0.17-0.37 | 0.2-0.4 | до 0.3 | до 0.02 | до 0.027 | 0.7 - 1.05 | до 0.25 |
Назначение: шарики диаметром до 150 мм, ролики диаметром до 23 мм, кольца подшипников с толщиной стенки до 14 мм, втулки плунжеров, плунжеры, нагнетательные клапаны, корпуса распылителей, ролики толкателей и другие детали, от которых требуется высокая твердость, износостойкость и контактная прочность.
2) Назначьте и обоснуйте режим термической обработки, опишите структуру и свойства стали после термообработки.
Закалка 830 0С охлаждающая среда – масло
Отпуск 280 0С охлаждающая среда – воздух
Отжиг 780 0С
В закалённом состоянии сталь обладает большой твёрдостью, но вместе с тем и хрупкостью. Чтобы придать ей вязкость, производится отпуск стали после закалки. Для этого её нагревают до температуры 220-300°С и медленно охлаждают в воздухе. Твёрдость стали при этом несколько уменьшается, структура её изменяется, и она становится более вязкой. Меняя температуру отпуска, можно получить разные механические свойства.
Механические свойства в зависимости от температуры отпуска
t отпуска, °С | s0,2, МПа | sB, МПа | d5, % | d4, % | KCU, Дж/м2 | HB | HRCэ |
Закалка 810 °С, масло. | |||||||
200 | 1960-2200 | 2160-2550 | 61-63 | ||||
300 | 1670-1760 | 2300-2450 | 56-58 | ||||
400 | 1270-1370 | 1810-1910 | 50-52 | ||||
450 | 1180-1270 | 1620-1710 | 46-48 | ||||
Закалка 830 °С, масло. | |||||||
400 | 1570 | 15 | 480 | ||||
500 | 1030 | 1270 | 8 | 34 | 20 | 400 | |
550 | 900 | 1080 | 8 | 36 | 24 | 360 | |
600 | 780 | 930 | 10 | 40 | 34 | 325 | |
650 | 690 | 780 | 16 | 48 | 54 | 280 |
3) Объясните влияние легирующих элементов на точки и линии диаграммы Fe- Fe3C, на термическую обработку и свойства стали
Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Cr, Ni, Mo, Wo, V, А1, В, Ti и др.), а также Мn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.
Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15...20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых сталей.
По применимости для легирования можно выделить три группы элементов. Применимость для легирования различных элементов определяется не столько физическими, сколько, в основном, экономическими соображениями.
· Mn,Si,Cr,B;
· Ni,Mo;
· V, Ti, Nb, W, Zr идр.
Легирующие элементы по механизму их воздействия на свойства сталей и сплавов можно разделить на три группы:
· влияние на полиморфные (альфа-Fe -> гамма-Fe) превращения;
· образование с углеродом карбидов (Сг,Fе)7С3; (Сг,Ре)23С6; Мо2С и др.;
· образование интерметаллидов (интерметаллических соединений) с железом - Fе7Мо6; Fe3Nb и др.
В следующей таблице показано влияние наиболее применяемых легирующих элементов на свойства стали.
Легирующий элемент | Входит в твердый раствор с Fe и упрочняет его | Увеличивает ударную вязкость | Расширяет область аустенита | Сужает область аустенита | Увеличивает прокаливаемость | Способствует раскислению | Образует устойчивые карбиды | Повышает сопротивление коррозии |
Ni | + | + | + | — | + | — | — | + |
Cr | + | — | — | + | — | — | + | + |
Mn (более 1%) | + | + | + | — | + | + | + | + |
Si (более 0,8%) | + | + | — | + | — | + | — | — |
W | — | — | — | — | — | — | + | — |
Сu (0,3 - 0,5%) | + | — | — | — | — | — | — | + |
По характеру влияние на полиморфные превращения легирующие элементы можно разделить на две группы:
· элементы (Cr, W, Mo, V, Si, Al и др.), достаточное содержание которых обеспечивает существование в сталях при всех температурах легированного феррита (ферритные ставы);
· элементы (Ni, Mn и др.), стабилизирующие при достаточной концентрации легированный аустенит при всех температурах (аустенитные сплавы). Сплавы, только частично претерпевающие превращение гамма->альфа, называются, соответственно, полуаустенитными или полуферритными.
Легирование феррита сопровождается его упрочнением. Наиболее значительно влияют на его прочность марганец и хром. Причем чем мельче зерно феррита, тем выше его прочность.
Многие легирующие элементы способствуют измельчению зерен феррита и перлита в стали, что значительно увеличивает вязкость стали. Однако все легирующие элементы, за исключением никеля, при содержании их в растворе выше определенного предела снижают ударную вязкость, трещиностойкость и повышают порог хладноломкости. Никель понижает порог хладноломкости.