Смекни!
smekni.com

Свойства стекла (стр. 3 из 4)

Очень важно также знать и поверхностное сопротивление стекла. Это свойство определяется состоянием поверхности стекла — загрязненности и адсорбированной пленки воды. Стекла, содержащие большое количество ионов щелочных металлов, легко сорбируют водяные пары и двуокись углерода, содержащиеся в воздухе. При этом на поверхности стекла образуется «карбонатная пленка», являющаяся проводником электричества, в результате чего поверхностное сопротивление стекла уменьшается. Поверхностное электрическое сопротивление стекла может уменьшиться и в результате загрязнения поверхности стекла частичками веществ, пыли.

Такое загрязненное с поверхности стекло делается проводником электричества, а не изолятором.

7. Газопроницаемость и обезгаживание стекол

При определенных условиях стекла обладают газопроницаемостью, т. е. газы способны диффундировать через стекло. Это свойство стекла становится заметным при разности давления по обе стороны стеклянной стенки не менее 106 торр.

Наибольшей проницаемостью через стекло обладают гелий и водород, причем скорость проникания водорода через стекла на порядок ниже, чем у гелия. Для аргона, кислорода и азота стекла можно считать непроницаемыми, так как проницаемость этих газов в 105 раз меньше проницаемости гелия.

Газопроницаемость стекол зависит от рода газа, состава стекла, температуры нагрева и толщины стенок. Чем плотнее структура стекла и чем больше молекула газа, тем меньше газопроницаемость.

Наибольшей газопроницаемостью обладает кварцевое стекло; его газопроницаемость приблизительно в 3-102 раза больше, чем других стекол. Проницаемость кристаллического кварца в 107 раз меньше, чем плавленого.

Интересно познакомиться с проницаемостью гелия через стенки колб, изготовленных из разных сортов стекла. Если при температуре 25 °С начальное давление в колбе было 1016 торр, то при тон же температуре давление повысится до 10-6 торр в колбе из плавленого кварца спустя три дня, из стекла «пирекс» — через месяц, а в колбе из известково-натриевого стекла и других стекол — лишь спустя долгое время.

Газопроницаемость уменьшается при увеличении толщины стенки и понижении температуры.

Стекла способны также адсорбировать и абсорбировать газы. Поглощение газов стеклом зависит и от вида газа, и от сорта стекла, а кроме того, от условий получения и хранения' стекла.

Растворение газов и связывание их стеклом в основном происходит в процессе его изготовления. «Насыщение» стекла водой наблюдается при длительном хранении его во влажной среде. Такая вода находится в основном в поверхностном слое и при нагревании до 450°С удаляется из него. Выделение воды при нагревании резко снижается, если стекло предварительно протравить плавиковой кислотой.

Выделение газов из стекла при нагревании можно наблюдать, например, при перепайке пламенем горелки стеклянных перетяжек на работающем под разрежением приборе. При этом вакуумно-ионизационный манометр показывает уменьшение разрежения в вакуумной системе, так как газы, содержащиеся в стекле, выделяются в откачиваемый объем. В таких случаях сначала происходит удаление воды, затем сорбированной двуокиси углерода. Подобные явления изменяют условия эксперимента и при высоких требованиях к их постоянству влияют на результаты исследований. Поэтому стеклянные детали после монтажа сложного вакуумного прибора обезгаживают. Для этого их прогревают под вакуумом при достаточно высоких температурах, но ниже температуры отжига стекла приблизительно на 100С.

Стеклянные приборы и коммуникации из стекол, работаюшие при низких давлениях, должны находиться при комнатной или более низких температурах.

8.Химическая стойкость

Стекло — химически довольно стойкий материал. Кислоты, за исключением плавиковой и фосфорной, практически не действуют на стекло. Однако нет таких стекол, которые бы совсем не реагировали с водой и щелочами. При длительном воздействии щелочей на стекло происходит его выщелачивание, изменение состава, вида и свойств. При действии воды происходит гидролиз стекла, в результате которого некоторое количество щелочи и других растворимых компонентов переходит в воду; их можно определить титрованием 0,01 н. НО Чем больше кислоты пошло на титрование, тем менее стойким к воздействию воды было стекло.

По отношению к действию воды стекла делят на пять гидролитических классов.

К классу I относят стекла, практически неизменяемые водой, к классу V-неудовлетворительные стекла; к классу II относятся устойчивые стекла; к классу III —твердые аппаратные; к классу IV —мягкие аппаратные стекла.

Большинство силикатных стекол, выпускаемых промышленностью, относятся к границе классов II и III или к началу класса III.

Наибольшей химической стойкостью по отношению к воде и кислым агрессивным средам обладает кварцевое стекло, но по отношению к щелочам оно тоже малоустойчиво, как и другие стекла. Например, при воздействии на кварцевое стекло концентрированной НС1 в течение 120 ч при 20°С потеря в массе стекла составляет 25 мг/см2, а при действии на то же стекло 1%-го раствора NaOH в течение того же времени и при той же температуре потеря в массе составляет 160 мг/см2.

Таким образом, химическая стойкость стекла в первую очередь определяется его составом: стекло химически более стойко с большим содержанием малорастворимых окислов алюминия, бора, цинка, свинца, магния и менее стойко с большим содержанием хорошо растворимых окислов щелочных и щелочноземельных металлов.

Однако химическая устойчивость стекла зависит и от его обработки. Так, она повышается после выдувания стекла из стекломассы, а также после отжига в печах, атмосфера которых содержит сернистый ангидрид. Это объясняется тем, что при высокой температуре между соединениями щелочных металлов, входящими в состав стекла, и газами, содержащимися в окружающей стекло атмосфере, протекает реакция, причем лишь на поверхности стекла.

Этот процесс условно называется обесщелачиванием поверхности стекла.

9. Стеклодувные работы

Стекла, используемые для изготовления лабораторных приборов и аппаратов, должны обладать высокой химической стойкостью, термостойкостью и в то же время должны легко обрабатываться на пламени стеклодувных горелок. В зависимости от термостойкости стекол их и классифицируют. При этом за основу принадлежности стекол к определенной группе берут коэффициент теплового расширения. Строгой классификации стекол по термостойкости не существует, но очень удобна в стеклодувном деле условная классификация стекол по термостойкости, предложенная С.К. Дуброво. Согласно этой классификации, все стекла можно разделить на четыре группы.

Первая группа — стекла, обладающие сравнительно невысокой термостойкостью. Коэффициент теплового расширения их колеблется в пределах - Ю-7 1/К в интервале 20—400°С. Такие стекла содержат 67—69% окиси кремния и 12—18% окислов щелочных металлов. К этой группе стекол можно отнести: № 23, ХУ-1, немецкое тюрингенское, Унихост, Х8, Мурано X, свинцовые стекла и некоторые другие.

Стекла этой группы сравнительно легкоплавки, поэтому обработку их следует вести очень тщательно, периодически обогревая на пламени обрабатываемые изделия. Обработку производят на «мягком» пламени горелок с небольшой добавкой кислорода, а иногда и без кислорода. Легкоплавкие стекла наиболее склонны к «расстекловыванию», т. е. во время длительного прогрева на пламени горелки из верхних слоев стекла частично «выжигаются» окислы щелочных металлов. Стекло в месте нагрева теряет прозрачность и становится мутным, а после остывания шероховатым на ощупь. Избавляются от этого «подсаливанием» пламени, для чего вводят в пламя горелки марлевый тампон, смоченный насыщенным раствором поваренной соли. Соль, оседая на расстеклованный участок размягченного стекла, возвращает ему первоначальный вид.

Особое внимание следует уделять обработке свинцовых стекол, так как при длительном прогреве в пламени они чернеют в результате восстановления металлического свинца. Чтобы этого не произошло, обработку свинцовых стекол производят в окислительной зоне пламени. Почернение свинцовых стекол может происходить и при длительном нагревании их электрообогревателями в присутствии кислорода.

Вторую группу составляют стекла с повышенной термостойкостью. Значение коэффициентов теплового расширения их лежит в пределах -107 1/К. Они содержат от 72 до 76% окиси кремния, 6—10% окиси щелочных металлов и 3—8% окиси бора. К этой группе можно отнести стекла: молибденовые, ДГ-2, Сиал, Иенатерм, и др. Стекла этой группы наиболее широко используются для изготовления приборов и вакуумных коммуникаций в цельнопаяных лабораторных установках.

В нашей стране наибольшей популярностью пользуются молибденовые стекла. Название молибденовые они получили благодаря замечательному свойству — давать вакуумноплотный спай с металлическим молибденом. Молибденовые стекла по своим химическим свойствам уступают другим стеклам: они менее стойки по отношению к кислотам, воде и щелочи. Однако они малогазопроницаемы и легко поддаются обработке. Они нашли применение в разных отраслях промышленности, например в электровакуумной. При длительном хранении в складских неблагоприятных условиях молибденовые стекла способны к кристаллизации.

Молибденовые стекла не выдерживают очень длительного нагревания в пламени, а в местах спаев могут мутнеть, приобретая коричнево-белесый или темно-коричневый оттенок. По-видимому, при высокой температуре и воздушно-кислородном дутье происходит окисление некоторых окислов металла, входящих в состав стекла. Ликвидировать помутнение невозможно, поэтому обработку такого стекла на пламени горелок следует вести быстро.