Смекни!
smekni.com

Синтез закона управления и настройка промышленного регулятора для стабилизации температуры в условиях возмущений (стр. 3 из 4)

In=

, площадь кривой после точки перегиба (пределы интегрирования: от 90(tп) до 600(¥)), причем,
=k*d(t), где d(t)=1-h(t), следовательно:

Таким образом, реализуя данный алгоритм, получаем следующие результаты:

T1 =

237.2624

T2 =

72.6200

Transfer function:

514.3

---------------------------

1.723e004 s^2 + 309.9 s + 1

График переходного процесса для такого звена представлен на рисунке 2.8

Рисунок 2.8 – График переходного процесса для звена второго порядка, рассчитанного с помощью метода площадей


2.6 Построение математической модели звена второго порядка методом Ротача

Проведем в точке перегиба касательную, для определения интервала времени Т0, заключенного между точками пересечения этой касательной оси абсцисс и линии установившегося значения h переходной характеристики:

Рисунок 2.9 – Нормированный переходный процесс

Таким образом, запишем величины, являющиеся входными данными:

T0=526 tп=90, y(tп)=0,09.

Введем обозначение:

Так как

, то возможна аппроксимация инерционным звеном второго порядка без запаздывания (т.е. q=1, t=0), следовательно, получаем следующую модель:

Таким образом, запишем модель звена второго порядка без запаздывания:

или

Теперь построим переходный процесс для данной передаточной функции.

w=tf([514.3],[8396 478.66 1]);

step(w, 600)

grid on

Результат представлен на рисунке 2.10.

Рисунок 2.10 – График переходного процесса для звена второго порядка, рассчитанного методом Ротача

2.7 Выбор наилучшей аппроксимирующей модели

Для выбора лучшей аппроксимирующей модели объекта управления среди найденных моделей сравним теоретические и экспериментальный переходные процессы. Для оценки качества полученных передаточных функций, описывающих объект управления, вычислим оценку χ2 по формуле:

Проведенный расчет дает следующие результаты:

%Расчет погрешностей

k=514.3;

y_real=[24.44 60 93.33 125.5 154.44 180];

y1=[32 72 101 122 136 146];

y2=[31.1 73.3 106.67 131.11 148.89 160];

y3=[30 58.33 63.33 103.33 116.67 128.33];

tmp=0;

for i=1:6

tmp = tmp + (y_real(i)-y1(i))^2;

end

x1=sqrt(tmp)/k

tmp=0;

for i=1:6

tmp = tmp + (y_real(i)-y2(i))^2;

end

x2=sqrt(tmp)/k

tmp=0;

for i=1:6

tmp = tmp + (y_real(i)-y3(i))^2;

end

x3=sqrt(tmp)/k

x1 =

0.0818

x2 =

0.0571

x3 =

0.1445

x1 – соответствует оценке звена запаздывания; x2 – соответствует апериодическому звену второго порядка, рассчитанному методом площадей; x3 – соответствует апериодическому звену второго порядка, рассчитанному методом Ротача.

Так как наименьшая оценка χ2 получилась у апериодического звена второго порядка, рассчитанного интегральным методом, то это звено и возьмем в качестве модели нашей системы. Передаточная функция объекта управления имеет вид:


3 СИНТЕЗ РЕГУЛЯТОРА

3.1 Синтез регулятора методом ЛАЧХ

Для того чтобы система удовлетворяла заданным требованиям по точности и качеству (перерегулирование s

5 %, время регулирования tP
420 с, коэффициент статической ошибки С0 =0), необходимо в систему, структурная схема которой изображена на рисунке 3.1, ввести регулятор.

Преобразуем структурную схему, представленную на рисунке 3.1, введем в систему регулятор как корректирующее звено последовательного типа:


Рисунок 3. 2 – Структурная схема замкнутой системы с регулятором

Найдем передаточную функцию неизменяемой части прямой цепи:

гдеWДТ=kД – передаточная функция датчика температуры Тд;

WИ=kИ – передаточная функция измерительного блока;

WО – передаточная функция объекта управления.

Передаточная функция прямой цепи (неизменяемой части системы):

Тогда коэффициент усиления неизменяемой части K:

Передаточная функция неизменяемой части прямой цепи будет иметь вид:

Передаточную функцию синтезируемого регулятора найдём методом логарифмических частотных характеристик. Для этого построим ЛАЧХ неизменяемой части прямой цепи исследуемой САУ:

Примем желаемую передаточную функцию в виде

.

Желаемый коэффициент усиления определяется из соотношения:

.

Kж=0,0186.

Передаточная функция регулятора:

Практически реализуемые регуляторы строятся с использованием следующих допущений и приближений: объект управления инерционен, и в цепях регулятора нет высокочастотных помех или они достаточно малы. Тогда высокочастотной частью регулятора можно пренебречь и считать, что T3=0. При этом желаемая ЛАЧХ рассчитывается из требования T1=T2, при желаемой ЛАЧХ в общем виде:

.

Для определения параметров регулятора воспользуемся следующими соотношениями:

Тогда передаточная функция регулятора будет иметь следующий вид:

С учетом параметров объекта и звеном чистого запаздывания передаточная функция регулятора окончательно примет вид:

.

Полученный регулятор является ПИ-регулятором с запаздыванием.

3.2 Переходная характеристика замкнутой системы

Модель построения переходной характеристики представим системе MatLab в виде передаточной функции.

Передаточная функция прямой цепи:

Получим передаточную функцию замкнутой системы:

введем следующие обозначения:

тогда передаточная функция замкнутой системы будет иметь следующий вид:

kp=4.67;

kn=1.23432;

Td=55.6;

Tu=309.8824;

T1=237.2624;

T2=72.62;

a1=kn*kp*Td*Tu

a1 =

9.9315e+004

a2=kn*kp*Tu

a2 =

1.7862e+003

b1=Tu*T1*T2

b1 =

5.3393e+006

b2=Tu*(T1+T2+kn*kp*Td)

b2 =

1.9534e+005

b3=Tu*(kn*kp+1)

b3 =

2.0961e+003

b4=kn*kp

b4 =

5.7643

a3=kn*kp

a3 =

5.7643

W=tf([a1 a2 a3],[b1 b2 b3 b4])

Transfer function:

9.932e004 s^2 + 1786 s + 5.764

----------------------------------------------

5.339e006 s^3 + 1.953e005 s^2 + 2096 s + 5.764

Переходный процесс для такой передаточной функции замкнутой системы представлен на рисунке 3.3.


Рисунок 3.3 – График переходного процесса замкнутой системы

Экспериментальные данные, полученные в ходе проверки спроектированного регулятора на стенде, представлены в приложении. График переходного процесса представлен на рисунке 3.4.

Рисунок 3.4 – График экспериментального переходного процесса замкнутой системы

Рабочая температура по варианту задания соответствует 180°C. Как видно из рисунка 3.4 все значения температуры лежат 10% коридоре, что является допустимым.

На рисунке 3.5 показан график поведения системы и установления температуры к заданному значению после действия на систему возмущения.