Смекни!
smekni.com

Синтез и анализ рычажного механизма (стр. 3 из 5)

Выбираем масштабный коэффициент сил:

Вектора сил на плане сил:

,

Значение силы на плане сил:

;

2.4 Расчёт кривошипа

Уравнение равновесия кривошипа

Реакция R12 известна и равна по величине, но противоположна по направлению реакции R21.

Уравнение имеет 2 неизвестные.

Выбираем масштабный коэффициент сил:

Значения сил на плане сил:

2.5 Рычаг Жуковского

Строим повёрнутый на 900 план скоростей, прикладываем к нему все внешние силы, действующие на механизм.

Уравнение моментов относительно полюса Pv и определяем Pу:

Погрешность расчёта силы Ру:

2.6 Определение мощностей

Потери мощности в кинематических парах:

Потери мощности на трение во вращательных парах:

где

- коэффициент

- реакция во вращательной паре,

- радиус цапф.

Суммарная мощность трения

Мгновенно потребляемая мощность

Мощность привода, затрачиваемая на преодоление полезной нагрузки.

2.7 Определение кинетической энергии механизма

Кинетическая энергия механизма равна сумме кинетических энергий входящих в н

его массивных звеньев.

Приведенный момент инерции

2.7.1 Расчёт сил инерции на ЭВМ

Sub Kulis 2 ()

Const H = 0.430

Const L0 = 0.16

Const L1 =0.092

Const a = 0.27

Const m = 0.27

Const Wl = 10,67

i = 2

For fl = 18 * 3.14/180 To 378 * 3.14 /180 Step 30 * 3.14 /180

Cosf3 = L1 * cos (fl) / ( ( (LI ^ 2 + L0 * LI * sin (fl)) ^ (1/2))

U31 = (cosf3 ^ 2) * (LI ^ 2 + L0 * LI * sin (fl)) / (LI ^ 2 * (cos (fl) ^ 2))

T = (LI ^ 2) + L0 * LI * sin (fl)

Q = (LI ^ 2) + (L0 ^ 2) + 2 * L0 * LI * sin (fl)

w3 = Wl * (T / Q)

up31= (L0*LI*cos (fl) * (L0^2 - LI^2)) / ( ( (L0^2) - (LI^2) + 2*L0*LI*sin (fl)) ^2)

e3= (Wl ^2) *up31

sinf3 = (L0 + LI * sin (fl)) / ( (LO ^ 2 + LI ^ 2 +2*LO*L1 * sin (fl)) ^ (1/2))

Up53 = (2 *a * cosf3) / (sinf3 ^ 3)

Ab = (w3 ^ 2) * up53 + e3 * u53

Ub = (Ab * m) /2

Worksheets (l). Cells (8,1 + 1). Value = CDbl (Format (Ub, "Fixed"))

Worksheets (l). Cells (2, i). Value - 1 - 2

I = I + 1

Next fl

Worksheets (l). Cells (2, l). Value = "Ub, H"

Worksheets (l). Cells (l,

1). Value = "Taблица1"

Worksheets (l). Cells (l,

5). Value - "Значения сил инерции Ub, м/с"

End Sub

Таблица 1.5 - Значение сил инерции кулисы 3.

Величина силы инерции, Н
0 1 2 3 4 5 6 7 8 9 10 11 12
120, б 50,6 29,1 24,7 -8,3 -27,9 -54,9 -87 -121,2 -108,3 74,1 119,6 126

Таблица 1.6 - Значение сил инерции кривошипа 5.

Величина силы инерции, Н
0 1 2 3 4 5 6 7 8 9 10 11 12
606 188,1 82,9 81,3 -18,3 -129,4 -281 -514,1 -560,1 -436,9 254,8 607,7 606

Рис.6 - Диаграмма сил инерции кулисы 3.

Рис.7 - Диаграмма сил инерции ползуна 5.

3. Проектирование зубчатого зацепления. Синтез планетарного редуктора

3.1 Геометрический расчет равносмещенного зубчатого зацепления

Исходные данные:

Число зубьев на шестерне

Число зубьев на колесе

Модуль

Угол профиля рейки

Коэффициент высоты головки зуба

Коэффициент радиального зазора

Суммарное число зубьев колес

Поскольку

, то проектируем равносмещенное зубчатое зацепление. Коэффициент смещение

Угол зацепления

Делительное межосевое расстояние

Начальное межосевое расстояние:

Высота зуба:

Высота головки зуба

Высота ножки зуба

Делительный диаметр

Осевой диаметр

Диаметр вершин

Диаметр впадин

Толщина зуба по делительному диаметру

Делительный шаг:

Шаг по основной окружности:

Радиус галтели:

Коэффициент перекрытия:

Погрешность определения коэффициента зацепления:

где ab и p находим из чертежа картины зацепления.

1. Масштабный коэффициент построения картины зацепления.

3.2 Синтез планетарного редуктора

Исходные данные:

Модуль

Частота вращения вала двигателя

Частота вращения кривошипа

Числа зубьев

Знак передаточного отношения - минус

Номер схемы редуктора

(рис.8).

Рис.8 - Редуктор

Передаточное отношение простой передачи