Выбираем масштабный коэффициент сил:
Вектора сил на плане сил:
Значение силы на плане сил:
Уравнение равновесия кривошипа
Реакция R12 известна и равна по величине, но противоположна по направлению реакции R21.
Уравнение имеет 2 неизвестные.
Выбираем масштабный коэффициент сил:
Значения сил на плане сил:
Строим повёрнутый на 900 план скоростей, прикладываем к нему все внешние силы, действующие на механизм.
Уравнение моментов относительно полюса Pv и определяем Pу:
Погрешность расчёта силы Ру:
Потери мощности в кинематических парах:
Потери мощности на трение во вращательных парах:
где
Суммарная мощность трения
Мгновенно потребляемая мощность
Мощность привода, затрачиваемая на преодоление полезной нагрузки.
Кинетическая энергия механизма равна сумме кинетических энергий входящих в н
Приведенный момент инерции
Sub Kulis 2 ()
Const H = 0.430
Const L0 = 0.16
Const L1 =0.092
Const a = 0.27
Const m = 0.27
Const Wl = 10,67
i = 2
For fl = 18 * 3.14/180 To 378 * 3.14 /180 Step 30 * 3.14 /180
Cosf3 = L1 * cos (fl) / ( ( (LI ^ 2 + L0 * LI * sin (fl)) ^ (1/2))
U31 = (cosf3 ^ 2) * (LI ^ 2 + L0 * LI * sin (fl)) / (LI ^ 2 * (cos (fl) ^ 2))
T = (LI ^ 2) + L0 * LI * sin (fl)
Q = (LI ^ 2) + (L0 ^ 2) + 2 * L0 * LI * sin (fl)
w3 = Wl * (T / Q)
up31= (L0*LI*cos (fl) * (L0^2 - LI^2)) / ( ( (L0^2) - (LI^2) + 2*L0*LI*sin (fl)) ^2)
e3= (Wl ^2) *up31
sinf3 = (L0 + LI * sin (fl)) / ( (LO ^ 2 + LI ^ 2 +2*LO*L1 * sin (fl)) ^ (1/2))
Up53 = (2 *a * cosf3) / (sinf3 ^ 3)
Ab = (w3 ^ 2) * up53 + e3 * u53
Ub = (Ab * m) /2
Worksheets (l). Cells (8,1 + 1). Value = CDbl (Format (Ub, "Fixed"))
Worksheets (l). Cells (2, i). Value - 1 - 2
I = I + 1
Next fl
Worksheets (l). Cells (2, l). Value = "Ub, H"
Worksheets (l). Cells (l,
1). Value = "Taблица1"
Worksheets (l). Cells (l,
5). Value - "Значения сил инерции Ub, м/с"
End Sub
Таблица 1.5 - Значение сил инерции кулисы 3.
Величина силы инерции, Н | ||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
120, б | 50,6 | 29,1 | 24,7 | -8,3 | -27,9 | -54,9 | -87 | -121,2 | -108,3 | 74,1 | 119,6 | 126 |
Таблица 1.6 - Значение сил инерции кривошипа 5.
Величина силы инерции, Н | ||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
606 | 188,1 | 82,9 | 81,3 | -18,3 | -129,4 | -281 | -514,1 | -560,1 | -436,9 | 254,8 | 607,7 | 606 |
Рис.6 - Диаграмма сил инерции кулисы 3.
Рис.7 - Диаграмма сил инерции ползуна 5.
Исходные данные:
Число зубьев на шестерне
Число зубьев на колесе
Модуль
Угол профиля рейки
Коэффициент высоты головки зуба
Коэффициент радиального зазора
Суммарное число зубьев колес
Поскольку
Угол зацепления
Делительное межосевое расстояние
Начальное межосевое расстояние:
Высота зуба:
Высота головки зуба
Высота ножки зуба
Делительный диаметр
Осевой диаметр
Диаметр вершин
Диаметр впадин
Толщина зуба по делительному диаметру
Делительный шаг:
Шаг по основной окружности:
Радиус галтели:
Коэффициент перекрытия:
Погрешность определения коэффициента зацепления:
где ab и p находим из чертежа картины зацепления.
1. Масштабный коэффициент построения картины зацепления.
Исходные данные:
Модуль
Частота вращения вала двигателя
Частота вращения кривошипа
Числа зубьев
Знак передаточного отношения - минус
Номер схемы редуктора
Рис.8 - Редуктор
Передаточное отношение простой передачи