Смекни!
smekni.com

Совершенствование системы неразрушающего контроля качества изделий на предприятиях машиностроительного профиля (стр. 8 из 9)

Все стрелки начинаются от края диаграммы и подходят к функциям. Таким образом, край диаграммы в IDEF0 имеет глубокий смысл. Диаграмма IDF0 проведение процесса дефектации приведена на ПЛ 9.

Предприятие обеспечивает, чтобы продукция, которая не соответствует требованиям, была идентифицирована и управлялась с целью предотвращения непреднамеренного использования или поставки. Средства управления, соответствующая ответственность и полномочия для работы с несоответствующей продукцией определены в документированной процедуре.

Организация должна решать вопрос с несоответствующей продукцией одним или несколькими следующими способами:

– осуществлять действия с целью устранения обнаруженного несоответствия;

– санкционировать, где это применимо, ее использование, выпуск или приемку, если имеется разрешение на отклонение от соответствующего полномочного органа и потребителя;

– осуществлять действия с целью предотвращения ее первоначального предполагаемого использования или применения.

Записи о характере несоответствий и любых последующих предпринятых действиях, включая полученные разрешения на отклонения, поддерживаются в рабочем состоянии.

Когда несоответствующая продукция исправлена, она подвергнута повторной верификации для подтверждения соответствия требованиям. Если несоответствующая продукция выявлена после поставки или начала использования, руководитель процесса предпринимает действия, адекватные последствиям (или потенциальным последствиям) несоответствия.

Организация должна определять, собирать и анализировать соответствующие данные для демонстрации пригодности и результативности системы менеджмента качества, а также оценивать, в какой области можно осуществлять постоянное повышение результативности системы менеджмента качества. Данные должны включать ин Анализ данных должен предоставлять информацию по:

– удовлетворенности потребителей;

– соответствию требованиям к продукции;

– характеристикам и тенденциям процессов и продукции, включая возможности проведения предупреждающих действий;

–поставщикам.

Организация должна постоянно повышать результативность системы менеджмента качества посредством использования политики и целей в области качества, результатов аудитов, анализа данных, корректирующих и предупреждающих действий, а также анализа со стороны руководства.

Организация должна предпринимать корректирующие действия с целью устранения причин несоответствий для предупреждения повторного их возникновения. Корректирующие действия должны быть адекватными последствиям выявленных несоответствий.

Должна быть разработана документированная процедура для определения требований:

– к анализу несоответствий (включая жалобы потребителей);

– к установлению причин несоответствий;

– оцениванию необходимости действий, чтобы избежать повторения несоответствий;

– к определению и осуществлению необходимых действий;

– к записям результатов предпринятых действий;

– к анализу предпринятых корректирующих действий.

Организация должна определить действия с целью устранения причин потенциальных несоответствий для предупреждения их появления. Предупреждающие действия должны соответствовать возможным последствиям потенциальных проблем.

Должна быть разработана документированная процедура для определения требований:

– к установлению потенциальных несоответствий и их причин;

– к оцениванию необходимости действий с целью предупреждения появления несоответствий;

– к определению и осуществлению необходимых действий;

Руководству следует обеспечивать , чтобы изменения, вносимые в процесс, были одобрены, спланированы, получили материально-техническую поддержку и управлять в целях заинтересованных сторон.

Глава 3. Перспектива автоматизации системы неразрушающего контроля изделий на предприятиях машиностроительного профиля

3.1 Комплексная технология АУЗК

В связи с высоким техническим уровнем современного производства методом и средством НК предъявляют высокие требования по быстродействию, механизации и автоматизации контрольных операций.

Такие методы, как радиографический, рентгенотелевизионный, магнитнопорошковый, ультразвуковой и другие, результаты которых оператор оценивает визуально по выходным характеристикам, автоматизированы не полностью. Создание автоматизированных систем обработки изображения для указанных методов – наиболее актуальная задача.

Как правило, стоимость и объем работ по созданию механизмов автоматизированных СНК значительно превышают затраты на приборную часть. Работа всех входящих в них устройств должна быть тщательно согласована с работой основного технологического оборудования. Они должны создаваться организациями-разработчиками основного технологического оборудования с учетом всех особенностей производственного процесса (климатических условий, производительности, вибрации, загрязнений, ударных нагрузок, износостойкости и т.д.).

Процесс разработки и проектирования автоматизированных систем НК не должен отдаляться во времени от процесса разработки основного оборудования для производства. Системы НК, предназначенные для работы в полевых условиях, также должны иметь механические приспособления, увеличивающие их производительность и обеспечивающие удобство в эксплуатации. Такими механическими приспособлениями являются устройства для правильной установки изделия и преобразователя относительно друг друга, для перемещения преобразователя по поверхности изделия и др. Автоматизированные системы неразрушающего контроля могут использоваться как самостоятельные устройства для входного, выходного или после операционного контроля продукции.

АУЗК позволяет проводить периодический УЗК (мониторинг) изделий. Отметим, что изображения дефектов являются промежуточным результатом экспертного контроля. Их анализ заканчивается составлением протокола контроля, в котором отражен тип несплошности и координаты его залегания.

Указанные выше особенности акустических изображений, полученных в результате когерентной обработки данных, позволяет применять комплексную технологию [3] контроля сварных соединений и осуществлять анализ качества сварных швов с учетом влияния дефектов на прочность шва.

На первом этапе проводится поисковой контроль по стандартным методикам ручного (РУЗК) или автоматизированного УЗК (АУЗК). Для исключения случаев пропуска («недобраковки») опасных дефектов плоскостного типа уровень чувствительности фиксации увеличивается в сравнении со стандартными методиками на 6-12 дБ. Если амплитуда эхо-сигнала от отражателя не достигает уровня фиксации, то шов признается годным и пропускается в эксплуатацию.

В противоположном случае на втором этапе проводится автоматизированный измерительный (экспертный) УЗК с помощью систем серии «Авгур» с целью определения типа и размера дефектов. Экспертному контролю подвергаются те участки, где на первом этапе были обнаружены отражатели с амплитудой эхо-сигналов, достигающей уровень фиксации. По трехмерным изображениям несплошностей, полученным после обработки и анализа, данных экспертного контроля, составляются заключения о размерах и типе дефектов (несплошностей).

На третьем этапе информация о параметрах дефектов используется для прочностного расчета ресурса работы сварного шва с учетом других характеристик, влияющих на ресурс. Если по расчетам запас прочности таков, что имеется возможность дальнейшей эксплуатации, шов допускается в работу оборудования. В противном случае шов отправляется в ремонт.

Данная технология ультразвукового диагностирования позволяет:

·проводить мониторинг развития дефектов в процессе эксплуатации объектов;

·составить базу данных о наличии различного рода допустимых несплошностей (осуществить паспортизацию швов);

·осуществлять эксплуатацию оборудования с «непроходными» (по действующим нормам) дефектам благодаря возможности оценки ресурса работы сварной конструкции по установленным размерам несплошностей и параметрам напряженного состояния;

·значительно повысить надежность выявления дефектов различного типа за счет более высокой чувствительности контроля;

·минимизировать как «перебраковку» благодаря регистрации всей информации о контроле и возможности детального анализа ее оператором в особо сложных и важных случаях.

Для того, чтобы в полной мере реализовать преимущества описанной выше технологии комплексного контроля и мониторинга, необходимо использовать приборы АУЗК, которые значительно повышают надежность УЗК. Кроме того, эти приборы должны позволять выполнять количественный контроль с изменением реальных параметров дефектов с известной погрешностью и возможностью наблюдения за поведением выявленного дефекта в течение длительного времени.

3.2 Сравнительная характеристика АУЗК и РУЗК

В качестве примера рассмотрим результаты анализа данных контроля 219 аустенитных сварных швов трубопроводов из нержавеющей стали диаметром 325 мм, выполненного в 1997-200 гг. по штатной методике РУЗК и АУЗК. Все эти швы были первоначально забракованы по данным РУЗК.

Были приведены сравнительные результаты дефектности швов по результатам АУЗК. Оказалось, что из 219 забракованных при РУЗК сварных швов 16 являются бездефектными. Заметим, что длины дефектов по данным РУЗК в этом случае превышали 100-200 мм. Анализ данных показал, что имеют место либо геометрические отражатели, либо аномально большое зерно в аустенитом сварном шве. Таким образом, «перебраковка» для РУЗК составляла около 7-8%.

Вместе с тем, при ручном контроле произошла «перебраковка» швов. Всего в результате АУЗК было обнаружено 345 дефектов различной протяженности и высоты. Их них 218 были выявлены и при РУЗК, и при АУЗК. Таким образом, почти 37% дефектов было дополнительно обнаружено при автоматизированном контроле. На рис. 3 приведено распределение по длине дефектов, обнаруженных штатным РУЗК. Большинство из них (59%) имеет размеры от 10 до 30 мм. Однако из 24% дефектов с длиной свыше 40 мм 12% длиннее 60 мм. Таким образом, при РУЗК возможны пропуски дефектов значительной длины, что может представлять серьезную опасность.