Смекни!
smekni.com

Современное состояние машиностроения (стр. 4 из 6)

Авиационная промышленность России опережает многие страны мира по разработке многих типов самолетов и вертолетов, особенно военного и оборонного значения, но уступает в производстве двигателей и авиационных приборов (авионики). В мире большой известностью пользуются самолеты таких российских фирм, как «Сухой», «МИГ», «Бериев», «Туполев», «Камов», «Миль», «Ильюшин».

Различные модификации самолетов типа «Ил» производят в Москве, Воронеже, Казани. Самолеты типа «Ту» — в Москве, Самаре, Ульяновске. Центрами авиастроения являются также Саратов, Омск, Новосибирск, Таганрог.

В настоящее время осуществляется реформирование отрасли. Новой формой управления является создание холдинговых компаний. Одна из таких компаний создана на базе ОАО «Авиационная холдинговая компания «Сухой», в которую вошли все серийные заводы по производству боевых самолетов марки «Су».

Формирование холдинговых компаний проходит в три этапа. На первом этапе акционируются авиационное производственное объединение Комсомольска-на-Амуре (КнААПО) и Новосибирское производственное объединение (НАПО).

Второй этап предусматривает увеличение государственного пакета акций в Иркутском авиационном производственном объединении (ИАПО) и Таганрогском авиационном научно-техническом комплексе имени Бериева (ТАНТК). На третьем этапе холдинг получит принадлежащий государству пакет акций ОКБ Сухого и АРПК «Сухой». На АХК «Сухой» будет возложена задача по созданию истребителей пятого поколения, который должен превзойти по своим качественным характеристикам американский самолет Р-35. Затраты на работы составят не менее 1,5 млрд долл.

В целях ускоренного развития авиастроения и повышения качества выпускаемой продукции в 2006 г. образован холдинг «Авиастар» в состав которого вошли семь крупнейших авиационных компаний страны. 70% акций этого концерна будет принадлежать государству.


2. Перспективы развития машиностроительного комплекса

Дальнейшее развитие машиностроительного комплекса должно опираться на новые базовые технологии, обеспечивающие выпуск конкурентоспособной продукции, оживление инвестиционной активности, государственную поддержку производств с высокими технологиями. Без этого не удастся достичь технологического обеспечения развития экономики, участия страны в качестве полноправного партнера в международном разделении труда.

К таким направлениям, безусловно, следует относить нанотехнологии. Они требуют малых затрат энергии, материалов, не нуждаются в обширных производственных и складских помещениях. С другой стороны, их развитие требует высокого уровня подготовки ученых, инженеров и технических работников, а также особой организации производства.

За рубежом работы в этой области стремительно развиваются в течение последних лет в рамках ряда приоритетных программ правительств Японии, США, ФРГ, Франции, Китая и других стран.

В России целевое бюджетное финансирование работ в области наноматериалов и нанотехнологий осуществляется с начала 90-х годов прошлого века в рамках нескольких программ. Государственная поддержка этих работ, хотя и несоизмеримая по своим масштабам с их финансированием в других странах, способствовала развитию этого перспективного направления, позволила сохранить научный потенциал, достаточно высокий уровень исследований и лидирующие позиции в некоторых областях нанонауки.

Нанотехнологии имеют конкретное промышленное применение. Сегодня на рынке предлагается большая номенклатура промышленно изготовляемых наноматериалов: металлических, гидрооксидов, оксидов и композитных порошков, которые уже находят широкое применение во многих секторах промышленности и строительства. Нанопорошки имеют свойства, отличающиеся от свойств металлов, окислов и т.д., из атомов и молекул которых они изготовлены.

В основе научно-технического «прорыва на наноуровне», форсируемого промышленно развитыми странами, лежит использование новых, ранее не известных свойств и функциональных возможностей материальных систем при переходе к наномасштабам, определяемым особенностями процессов переноса и распределения зарядов, энергии, массы и информации при наноструктурировании. Многие из кардинально отличных свойств наноматериалов по отношению к объемным того же химического состава обусловлены эффектами многократного увеличения доли поверхности нанозерен и нанокластеров (до сотен квадратных метров на грамм). С этим связаны новые свойства многих конструкционных и неорганических наноматериалов. Причем значительное количество таких свойств до конца еще не исследовано.

2.1 Нанотехнологии в авиастроении

Аэрокосмическое наноструктурирование имеет решающее значение для разработки и изготовления отличающихся малой массой и высокой прочностью термически устойчивых материалов для самолетов, ракет, космических станций и исследовательских спутников. Кроме того, космические условия с низкой гравитацией и высоким вакуумом могут обеспечить прорывные направления в самих технологиях получения наноструктур и наносистем. Космические технологические установки могут стать одним из важных путей создания наносистем.

Области применения наноструктур в аэрокосмических системах:

· устойчивые к космической радиации компьютерные системы с малым энергопотреблением и высокими эксплуатационными характеристиками;

· наномасштабное приборное обеспечение для космических станций и перспективных спутников малых размеров;

· авионика (авиационная электроника) нового поколения на основе наноструктурных датчиков и наноэлектроники;

· теплозащитные, жаропрочные и износостойкие наноструктурированные покрытия;

· наномодифицированные полимеры и полимерные композиты с повышенными усталостными характеристиками;

· увеличение в несколько раз энергетической эффективности солнечных батарей и развитие альтернативных энергетических систем.

Важнейшая задача современного самолетостроения – облегчение конструкции летательного аппарата. Замена от 50 до 30 млн. заклепок, используемых сегодня при изготовлении корпуса большого пассажирского самолета, на сварные швы позволила бы значительно облегчить его, удешевить производство и существенно улучшить эксплуатационные характеристики. Такая замена возможна только при выполнении условия равенства прочности сварного шва и прочности свариваемого материала. Конструкция самолета должна иметь все детали с одинаковой прочностью. Однако современные методы сварки авиационных материалов (алюминиевых и титановых сплавов) не позволяют в полной мере выполнять это требование.

Ученые Института теоретической и прикладной механики СО РАН (ИТПМ СО РАН) разработали лазерную сварку с применением наночастиц, позволяющую существенно улучшить прочностные свойства сварного шва. Основная идея новой технологии – управление процессом кристаллизации при сварке с помощью наночастиц тугоплавкого соединения (например, карбида титана), которые вводят в сварной шов. Тем самым повышаются механические свойства (прочность и пластичность) металла шва, возрастает в несколько раз относительное удлинение, увеличиваются предел прочности и предел текучести.


2.2 Нанотехнологии в автомобилестроении

В целом, говоря о представившихся возможностях использования наноматериалов в автомобильной промышленности, надо отметить, что в этой области уже накоплен некоторый, по большей части положительный опыт, а перспективы применения нанотехнологий в автомобилестроении пока еще скрыты от наших глаз.

Краска

Автором одной из первых заметных инициатив в этой области стала компания Daimler-Crysler, которая начиная с 2003 года при окрашивании кузовов автомобилей марки Mercedes-Benz серий E, S, CL, SL и SLK использует прозрачный лак. Покрытие включает наноразмерные (ок. 20 нм) керамические частицы, в связи с чем была изменена и молекулярная структура самого связующего состава. На практике это позволило значительно улучшить износоустойчивость, а вместе с тем и декоративные свойства лакокрасочного покрытия перечисленных выше моделей.

Продолжая тему об инновационных видах автомобильных лакокрасочных покрытиях, хочется упомянуть о работах, что ведутся в этом направлении компанией Du-Pont. Согласно опубликованной информации, компанией ведется разработка принципиально нового лакокрасочного материала с активным привлечением последних достижений в нанотехнологии. По сообщениям разработчика, новые л/к материалы будут экологически чистыми, обладать повышенной износоустойчивостью, но, что самое примечательное, высыхание слоя такой краски при воздействии на него УФ-излучения не будет превышать десяти секунд. Правда, для работы с такой л/к системой предварительно необходимо вооружиться и новым оборудованием. Среди намеченных планов компаниями, занимающимися разработкой и производством лакокрасочных покрытий, создание в скором будущем защитных лакокрасочных покрытий, способных произвольно менять свой цвет (в зависимости от подаваемого на них напряжения), а также при необходимости даже блокировать проникновение радиосигналов заданных частот в салон автомобиля.

Антикоррозионные составы

Накопленный опыт в области наноразмерных частиц позволил немецким ученым из Института новых материалов в Саарбрюккене заявить о возможности создания в скором времени ингибиторов коррозии нового поколения. Руководитель института профессор химии Хельмут Шмидт обрисовал принцип действия новых ингибиторов следующим образом: «…к стандартному покрытию автомобиля мы подмешиваем наночастицы, выполняющие функцию ингибиторов коррозии, причем придаем им такие свойства, чтобы они в случае необходимости обеспечивали быструю диффузию соответствующих компонентов покрытия в зону повреждения и как бы затягивали рану». То, что такие ингибиторы коррозии обладают способностью свободно перемещаться внутри твердого лакокрасочного покрытия, профессором Шмидтом было доказано уже десять лет назад. Тогда ему удалось обнаружить, что наночастицы на металлической, стеклянной или керамической поверхностях ведут себя как ионы в свободном растворе. Говоря иными словами, они стремятся обеспечить и поддерживать во всем объеме равновесие, а любой перепад концентрации, вызванный, к примеру, царапиной на лакокрасочном покрытии, тотчас выровнять за счет диффузии.