Смекни!
smekni.com

Способы утилизации отходов, образующихся при огневой зачистке поверхности металлов (стр. 2 из 4)

Мелкая окалина проваливается через щели в наклонных решетках и попадает в наклонные каналы, по которым непрерывно течет вода, смывающая ее в большую отстойную яму в скрапном пролете. Из ямы ее убирают с помощью грейферного крана.

На слябингах 1250 конструкции НКМЗ применяется механизированная уборка скрапа при помощи скипового подъемника (рисунок 3).

Под рабочими рольгангами 1 расположены бункера 2 с затворами;. в бункера попадают весь скрап и большие куски окалины, которые отделяются от слитков при прокатке. По наполнении бункера затвор 3 пневмоприводом 4 открывается и скрап загружается в скиповую тележку 5. При помощи лебедки 6 и канатного привода скип со скрапом поднимается вверх и разгружается в железнодорожную платформу 7, находящуюся в скрапном пролете.

Мелкая окалина проваливается вниз через щели в решетках и попадает в наклонные каналы, по которым непрерывно течет вода. Окалина смавается в отстойную яму в скрапном пролете, из которой периодически удаляется грейферным краном в железнодорожные платформы.

Глава 2 ПЛАЗМЕННАЯ ЭЛЕКТРОДУГОВАЯ ОЧИСТКА МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ

Впервые электрическая дуга, следовательно, и низкотемпературная плазма, были использованы на практике для удаления оксидов и любых других загрязнений с поверхности алюминия и некоторых его сплавов при разработке технологий аргонно-дуговой сварки конструкций из алюминиевых сплавов [1-3]. При сварке на постоянном токе при обратной полярности очищающее действие электрической дуги в катодной области реализуется в течение всего процесса ее горения, а при сварке на переменном токе, в те полупериоды, когда изделие является катодом. Механизм очистки поверхности в катодном пятне электрической дуги от оксидов и любых других загрязнений заключается в воздействии на поверхность катода потока высокоэнергетичных ионов плазмы, генерируемых электронами эмиссии в прикатодной области дуги.

Потоком бомбардирующих ионов, ускоренных падением потенциала в катодных пятнах, очищаемой поверхности передается энергия с плотностью порядка 1011 Вт/м2. При этом, по оценкам ряда исследователей [4, 5], в катодном пятне температура достигает (5-10) – 103К, а давление пара оксидов и металла 107-108 Па. Отсюда механизм очистки металлов от оксидов и других загрязнений в катодном пятне можно представить в режиме «стоп-кадр» следующим образом. Над металлической поверхностью находится слой плотного металлического пара или слой перегретого металла, с поверхности которого в окружающее пространство со сверхзвуковой скоростью истекают струи газовой смеси металла с диссоциированными оксидами. В этой смеси компоненты с низким потенциалом ионизации (в основном атомы металлов – по уравнению Саха [6]) находятся в состоянии плазмы. Катодные пятна хаотически под воздействием собственных или внешних магнитных полей перемещаются по поверхности очищаемого изделия. Исследования показали, что скорость перемещения катодных пятен с плотностью тока порядка 1010 А/м2 зависит от толщины оксидного слоя (печная, прокатная окалина, ржавчина, другие загрязнения), давления насыщенного пара материала изделия и загрязняющих веществ на поверхности, теплопроводности, температура очищаемого изделия, конфигурации и рельефа поверхности, давления и химического состава окружающей среды.

В некоторых случаях катодная область дугового разряда на очищаемом изделии представляет собой сплошной нитевидный фронт на границе очищенного металла и оксидного покрытия. Длина или периметр нитевидного фронта катодной области может достигать сотен миллиметров. Это наиболее производительный режим плазменно-дуговой очистки.

Наибольшая производительность и высокое качество плазменной электродуговой очистки достигается при понижении давления внешней среды относительно атмосферного до 1,33х102 – 1,33 Па [7-9]. В этом диапазоне давлений электрическая дуга стабильная, парциальное давление кислорода ниже упругости диссоциации большинства оксидов металлов при температурах, реализуемых в катодной области вакуумной дуги, благодаря чему на очищаемой поверхности интенсивно протекает реакция диссоциации оксидов и других загрязнений, их ионизация и испарение (сублимация). Ионизируются в основном металлы, при этом ионы под воздействием электростатического поля, возникающего в области катодного падения потенциала, ускоряются и имплантируются в поверхность очищаемого изделия. В результате на поверхности очищенного изделия образуется слой металла, восстановленного из оксидов. Энергозатраты на очистку 1 м2 в зависимости от степени загрязненности поверхности составляют 0,3 – 2,0 кВт/ч.

Глава 3 АБРАЗИВНЫЕ МАТЕРИАЛЫ ИЗ ОТХОДОВ

ОГНЕВОЙ ЗАЧИСТКИ ПОВЕРХНОСТЕЙ

Огневая зачистка поверхности стальных заготовок, болванок, брусков и плит, проводимая для удаления дефектов поверхности сопровождается образованием отходов. Огневая зачистка состоит в быстром удалении поверхностного слоя стали при сжигании топлива в кислороде, подводимого к поверхности с помощью одной или нескольких горелок. Кислород окисляет часть стали, причем происходит выделение тепла и повышение температуры, приводящее к плавлению поверхностного слоя. Образующиеся при этом отходы представляют собой частично окисленные частицы стали, главным образом сферической формы.

Отходы огневой зачистки охлаждают, смывают с поверхности стали струей воды под высоким давлением и собирают в бассейне. Размер частиц не менее чем 0,15 и не более 50,8 мм в диаметре. Частицы состоят из внешней оболочки из окиси железа, окружающей внутреннее металлическое ядро, которое имеет химический состав, аналогичный обрабатываемой стали.

Отходы огневой зачистки не находят специального применения. В последнее время предпринимают попытки их переработки в стальных дробилках для выделения железа, которое содержится в частицах. Отходы смешивают с окалиной, стальной стружкой и подобными материалами и смесь добавляют к агломерату, из которого выделяют железо. Однако для этого могут быть использованы только крупные частицы. Из этого следует, что большинство крупных частиц необходимо удалять из мельниц и складировать. В последние годы широкое распространение поверхностной зачистки стали привело к росту использования автоматических машин для огневой зачистки поверхностей. В результате возросло количество отходов, что требует увеличения времени на транспортировку и объема хранилищ.

Процесс позволяет получать материал с твердостью HRC 20—35, который может быть использован в качестве градуированного по размеру металлического абразива, обладающего хорошей жесткостью, временем службы и повышенной чистящей способностью по сравнению с продажными градуированными стальными абразивами (сферическая дробь, стальная остроугольная дробь).

Отходы просеивают для отделения частиц от посторонних материалов и делят на фракции, содержащие частицы диаметром менее 6,35 и более 6,35 мм. Фракция >6,35 мм возвращается в процесс производства стали. Фракция <6,35 мм помещается в дробильные мельницы и дробится до тех пор, пока наружная оболочка частиц не разрушится на мелкие куски и не отделится полностью от внутреннего металлического ядра. Обломки оболочки и металлические ядра отделяют друг от друга просеиванием. Металлическую дробь разделяют на фракции просеиванием на ситах разных размеров.

Металлическая дробь имеет микроструктуру неотпущенного мартенсита с чистотой поверхности токарной обработки, она значительной степени свободна от межзеренного и внутризеренного раскалывания, обладает твердостью около HRC 20—35 и характеризуется хорошей ударной прочностью и увеличенным временем службы.

Механические методы очистки поверхности

Механические методы очистки позволяют создать шероховатую поверхность, обеспечивающую надежную адгезию покрытия с металлом, отличаются сравнительной простотой, относительно небольшой стоимостью и универсальностью, за исключением дробеструйной и гидравлической очисток. К механическим методам очистки относятся гидроабразивный, пескоструйный, дробеметный, дробепескоструйный, в галтовочных барабанах, на специальных станках, ручными инструментами, механизированными инструментами.

Вручную поверхности очищают простейшими инструментами — стальными шпателями, скребками, стальными проволочными щетками и т. п. Этот метод простой, но очень трудоемкий, в настоящее время применяется довольно редко, при небольшом объеме окрасочных работ, например в единичном производстве. Ручные электрические и пневматические машины, называемые иначе механизированными инструментами, применяемые для очистки металлических поверхностей изделий, позволяют повысить производительность очистительных работ в единичном и мелкосерийном производстве по сравнению с очисткой вручную в 5, а во многих случаях даже в 15, раз и значительно облегчить ручной труд. По конструкции рабочего органа они бывают прямые, торцовые и угловые.

Наиболее распространенный тип рабочего инструмента— ручные пневматические прямые шлифовальные машины с ротационным пневмодвигателем, например модели П-2009, ПШМ-08-90, П-2008, ШР-2, 9668-512 и др.; конструкции их во многом сходны. Ось рабочего органа у них совпадает с осью вала двигателя (поэтому и в названии слово «прямые»).

Угловые пневматические шлифовальные машины предназначены для обработки поверхностей в труднодоступных местах. Вместо абразивного инструмента эти машины оснащают торцовой стальной проволочной щеткой и используют для очистки металлических поверхностей от ржавчины, старой краски, зачистки сварных швов, углов и поверхностей, имеющих выступы.

Представителем угловых пневматических машин является модель П-2109. В ее корпусе установлен пневмо-двигатель с центробежным регулятором частоты вращения. На шлицевом конце вала ротора двигателя насажено коническое зубчатое колесо, которое передает вращение коническому зубчатому колесу, смонтированному на шпинделе в угловой головке. На корпусе имеется металлическое кольцо для подвешивания машины на рабочем месте к балансиру.