5. ТЕПЛОВОЙ БАЛАНС И ТЕПЛОВОЙ КПД КОТЛА-УТИЛИЗАТОРА
5.1 Составляющие теплового баланса
Тепловой баланс котла вытекает из закона сохранения энергии и устанавливает равенство между количеством подведенной
и расходуемой теплоты. В общем виде он записывается так: = . (4.31)Суммарное количество теплоты, внесенной в котел, называется располагаемой теплотой
, которая является приходной частью теплового баланса: = . (4.32)Располагаемая теплота
включает в себя все виды теплоты, внесенной в котел*: , (4.33)где
и – соответственно низшая теплота сгорания и физическая теплота смеси ОГ с ПГ; – теплота, внесенная в котлоагрегат воздухом при подогреве его вне агрегата посторонним источником энергии (не в воздухоподогревателе котла).Если принять энтальпию воздуха в окружающей среде за начало отсчета, то теплоту внешнего подогрева воздуха
можно определить по формуле: , (4.34)где
и – соответственно энтальпии воздуха на входе в воздухоподогреватель котла после его предварительного подогрева (например, в паровом калорифере) до температуры и холодного воздуха с температурой . Как было сказано выше в разделе 4.6, температуру принимают равной 60…80 °С. Температура холодного воздуха принимается обычно равной 30 °С.Если записать составляющие расходной части равенства (4.31) применительно к рассматриваемому котлу-утилизатору, то в развернутом виде уравнение теплового баланса котла будет иметь вид:
, (4.35)где
– полезно использованная теплота (израсходованная на выработку технологической или энергетической продукции, например, на нагрев воды или получение пара заданных параметров); , , – потери теплоты соответственно с уходящими газами (продуктами сгорания), химической неполнотой сгорания смеси ОГ с ПГ и от наружного охлаждения (в окружающую среду через ограждения котла).Уравнение теплового баланса можно записать в виде, где все составляющие выражены в процентах по отношению к располагаемой теплоте, принимаемой за 100 % (
= 100%): , (4.36)где
и т. д.5.2 Коэффициент использования теплоты
Энергетическая эффективность котла-утилизатора характеризуется коэффициентом использования теплоты, или коэффициентом полезного действия h, %:
. (4.37)Среднестатистические данные по тепловым потерям
и приводятся в таблице исходных данных к настоящей работе. Потеря теплоты с уходящими из котла газами (продуктами сгорания) , %, определяется по формуле , (4.38)где
– энтальпия продуктов сгорания при температуре уходящих газов ; – коэффициент избытка воздуха в уходящих газах (в данном случае коэффициент избытка воздуха по газоходам котла не меняется, то есть ); – энтальпия теоретически необходимого количества воздуха при температуре холодного воздуха . Температура уходящих газов для котлов подобного типа принимается равной 180 … 190 °С.6. ПАРОПРОИЗВОДИТЕЛЬНОСТЬ КОТЛА
Одним из основных параметров котельного агрегата является его номинальная паропроизводительность
, т. е. наибольшая паропроизводительность, которую котел должен обеспечивать в течение длительной эксплуатации при номинальных величинах параметров пара и питательной воды.Однако при изменении количества, состава и температуры отходящих из технологической установки газов, изменении параметров вырабатываемого пара, а также конструкции поверхностей нагрева действительная паропроизводительность может отличаться от номинальной, вследствие чего она подлежит определению в поверочном тепловом расчете.
Паропроизводительность котла-утилизатора, в котором нет отбора к потребителям насыщенного пара и в котором отсутствует вторичный пароперегреватель, определяется по формуле:
, (4.39)где
– расход смеси ОГ с ПГ; – располагаемая теплота; h – коэффициент использования теплоты, %; , , – энтальпии соответственно перегретого пара, питательной воды и кипящей (продувочной) воды в барабане парового котла; – коэффициент, учитывающий расход кипящей воды на непрерывную продувку* котла. Величина этого коэффициента , где – расход продувочной воды, и составляет обычно 0,015 … 0,05. Температура питательной воды составляет 140 … 150 °С.7. ЭКСЕРГЕТИЧЕСКИЙ АНАЛИЗ ЭФФЕКТИВНОСТИ КОТЛА-УТИЛИЗАТОРА
В последние годы в практике инженерных расчетов для оценки степени термодинамического совершенства энерготехнологических систем, теплотехнических установок и их элементов все шире используется эксергетический анализ. В его основе лежит понятие эксергии, под которой понимают максимальную работу термодинамической системы при обратимом переходе ее в состояние равновесия с окружающей средой. Эксергетический метод термодинамического анализа позволяет оценить:
качество (потенциал) энергии с точки зрения ее работоспособности, в частности, располагаемые резервы утилизации вторичных энергоресурсов (отходящих газов какого-либо производства, горячей воды и пара, отработавших в технологических и силовых установках, и др.);
снижение качества (“деградацию”) энергии из-за необратимого протекания реальных процессов (горения, теплообмена, смешения, трения и т.д.)
В зависимости от вида термодинамической системы и энергии, которая преобразуется в работу, различают несколько видов эксергии. При анализе эффективности котла-утилизатора целесообразно использовать понятия эксергии потока вещества и химической эксергии.
7.1 Виды эксергии, используемые при анализе эффективности котла-утилизатора
7.1.1 Эксергия потока вещества
Эксергия потока вещества характеризует максимальную располагаемую работу, совершаемую потоком в процессе обратимого перехода из состояния, характеризуемого параметрами
, , в состояние с параметрами окружающей среды , . Величина удельной (для единицы массового расхода) эксергии потока вещества определяется по формуле