где
, – удельные значения энтальпии и энтропии вещества в состоянии, характеризуемом параметрами , ; , – значения указанных величин в состоянии равновесия с окружающей средой.Уравнение (7.1) отражает единственно возможный путь обратимого перехода вещества из состояния
, к состоянию , , обеспечивающий достижение : сначала обратимый адиабатный процесс до момента, когда температура становится равной , а затем изотермический процесс при . Указанная последовательность процессов позволяет избежать потерь из-за внутренней и внешней необратимости, связанной с теплообменом при конечной разности температур.В частном случае, когда давление в потоке близко к давлению окружающей среды
, а вещество близко по свойствам к идеальному газу, расчет разностей и можно выполнить на основе средних удельных теплоемкостей, выраженных эмпирическими уравнениями типа . При этом расчетные формулы для однородного вещества имеют вид: , (7.2) , (7.3)где
– среднелогарифмическая температура в интервале от до : . (7.4)К такому именно случаю можно отнести движение воздуха и продуктов сгорания в газоходах котельной установки.
Поскольку, как уже отмечалось ранее, расчеты котельной установки принято вести по отношению к единице количества топлива, отходящих газов или их смеси, соответственно будем иметь:
, (7.5) , (7.6) . (7.7)Следует указать также на возможность приближенного вычисления эксергии потока вещества для указанного частного случая р1» р0 по формуле
. (7.8)Установлено, что погрешность при использовании этой формулы в диапазоне температур Т = 273–2500 К составляет <3%, что допустимо для таких расчетов.
7.1.2 Химическая эксергия
Химическая (нулевая) эксергия
– это та максимальная работа, которая может быть получена в результате преобразования какого-либо вещества, т. е. определенного соединения химических элементов, в другие соединения этих элементов, наиболее распространенные в окружающей среде и находящиеся с ней в равновесии. Такое преобразование должно осуществляться в ходе обратимой химической реакции при , с участием дополнительных веществ (окислителя, катализатора).Приближенно можно считать, что химическая эксэргия представляет собою теплоту реакции, взятую с обратным знаком. В частности, для топлива удельное значение ее можно брать примерно равной высшей теплоте сгорания
.Для газообразного топлива, а также горючих отходящих газов:
, (7.9)где
– низшая теплота сгорания.7.2 Эксергетический баланс котла-утилизатора
Содержание эксергетического анализа составляют расчеты составляющих эксергетического баланса и эксергетического КПД.
В отличие от баланса энергии, баланс эксергии для любой установки может быть сведен лишь условно, если включить в число его составляющих эксэргию, потерянную в процессах преобразования энергии. Баланс эксергии может быть записан в двух формах, одна из которых имеет вид
, (7.10)где
– суммарная эксергия, поступающая в установку с потоками вещества и энергии; – суммарная эксергия, уходящая из установки; – сумма потерь эксергии в установке.Суммарная эксергия, поступающая в котел-утилизатор складывается из следующих составляющих:
, (7.11)где
– химическая эксергия смеси отходящих газов с природным; – физическая эксергия потока указанных газов; – эксергия потока воздуха, поступающего в котел (на входе в воздухоподогреватель); – эксергия потока питательной воды, поступающей в котел (на входе в экономайзер).Величина химической эксергии смеси отходящих газов с природным, поступающей за единицу времени в котел-утилизатор, приближенно вычисляется по формуле:
. (7.12)Физическая эксергия смеси отходящих газов с природным:
. (7.13)Поскольку природный газ поступает из окружающей среды, его физическая эксергия равна нулю. Тогда
, (7.14)где
; – энтальпии отходящих газов, соответственно, при и .Эксергия воздуха на входе в котел
, (7.15)где
, , – энтальпии воздуха при и .Эксергия питательной воды, поступающей в котел, находится в случае ее предварительного подогрева как
, (7.16)где
, – энтальпия и энтропия воды при и заданном давлении в котле (находятся по таблицам воды и водяного пара); , – энтальпия и энтропия воды при , .