Практична робота №2
Термодинамічні розрахунки ймовірності протікання твердофазних реакцій у процесах спікання металургійної сировини
До найважливіших величин, що характеризують хімічні системи, відносятся: внутрішня енергія U, ентальпія Н, ентропія S й енергія Гіббса (ізобарно-ізотермічний потенціал) G. Всі ці величиниє функціями стану, тобто залежать тільки від стану системи, але не залежать від способу, яким цей стан досягнутий.
При екзотермічних реакціях (тепло виділяється) внутрішня енергія системи зменшується (AU<0). Якщо внутрішня енергія системи зростає (
Якщо в результаті хімічної реакції система поглинула тепло Q і зробила роботу А, то зміна внутрішньої енергіїмає такий вигляд
Відповідно до закону збереження енергії,
Якщо реакція протікає при постійному об’ємі (
Для ізобарного процесу (
При постійному тиску
Якщо при цьому ніякі інші роботи не відбуваються,
Стандартний стан речовини при даній температурі - його стан у вигляді чистої речовини при нормальному атмосферному тиску 101325 Па, або 760 мм.,рт.,ст. стандартні умови протікання реакції —> стандартні зміни відповідних величин
Стандартна ентальпія реакції утворення 1 моля даної речовини із простих речовин звичайно виражається в кДж/моль.
Закон Гесса (1840р.): Тепловий ефект хімічної реакції залежить тільки від початкового й кінцевого станів речовин, що беруть участь у реакції, і не залежить відпроміжних стадій процесу. Наслідок: Стандартназмінаентальпії хімічної реакції дорівнює сумі стандартнихентальпійутворення продуктів реакції за винятком суми стандартних ентальпій речовин, що утворилися,
Направлення мимовільного протікання хімічних реакцій визначається спільною дією двох факторів: 1) тенденцією до переходу системи в станз найменшою внутрішньою енергією (ентальпіею); 2) тенденцією до досягнення найбільш ймовірного стану, що може бути реалізовано найбільшим станомрівноймовірних способів (мікростанів).
Мірою першою (проявляється при всіх температурах однаковою мірою) тенденції є
Мірою другою (проявляється тим сильніше, чим вище температура) тенденції є
S зростає з підвищенням температури, при переході від кристалічного стану в рідкий й далі в газоподібний; при збільшенні числа газових молекул у долі реакції.
У відмінності від ентальпії , ентропія утворення простої речовини не дорівнює нулю. Функція, що одночасно відбиває вплив обох тенденцій на напрямок протікання хімічних процесів називається енергією Гіббса:
Для ізобарно-ізотермічних процесів
При сталості температури й тиску хімічні реакції можуть мимовільно протікати тільки в одному напрямку, при якому енергія Гіббса системи зменшується ( G < 0).
Використовуючи дані, щоприводять у довідниках, по термодинамічних властивостях речовин можна розрахувати стандартназміна цієї функції
Термодинамічна ймовірність - число мікростанів (мікророзподілів), якими може здійснюватися розглянутий макророзподіл.
Число мікророзподілів N часток по пстанах (наприклад N часток в
n відсіках) виражається формулою W= (1), де N1,N2,...Nn - число часток в
нервом, другому й n-номстані (відсіку). Причому N = N1+N2+...+Nn.
Обчислимо термодинамічні ймовірності макростанів а, б, в, м, д, наведених на мал. 1.
W(а)=
W(г) =
Таким чином, найбільша термодинамічна ймовірність у рівномірного розподілу, воно може здійснюватися найбільшим числом способів.
Больцман показав, що ентропія системи S може служити характеристикою термодинамічної ймовірності даного стану системи W. Зв'язок між ними виражається рівнянням S = Rln = kNaln (2) де R -універсальна газова постійна; Na-число Авогадро;
k = - постійна Больцмана.
Формула (2) ставиться до числа найкращих співвідношень, породжених науковою думкою [усього їх три, у тому числі формула Эйлера й формула Эйнштейна], що зв'язує простим співвідношенням величини, щоволодіютьзовсім різним змістом, щоставляться до різних матеріальних сутностей [фізичні величини S, R зматематичноїW].
S = Rln klg =klg де M = lge= 0,4343 - модуль десяткового логарифма;
k коефіцієнт пропорційності. Число еє межа, до якого
прагне
Абсолютно достовірною характеристикою можливості протікання реакції в розглянутих умовах служитьістина зміна енергії Гіббса