Существенным фактором, влияющим на эффективность передачи тепла, является способ размещения труб в камере конвекции. При расположении труб в шахматном порядке в связи с более интенсивной турбулентностью потока дымовых газов и лучшей обтекаемостью ими труб тепло передается эффективнее, чем при расположении коридорным способом (рисунок 1.2). При одинаковой скорости движения дымовых газов шахматное расположение труб обеспечивает по сравнению с коридорным более эффективную (на 20-30 %) передачу тепла.
Уменьшение диаметра труб также способствует более интенсивной передаче тепла, как за счет лучшей обтекаемости труб, так и в связи с возможностью более компактного их расположения, позволяющего создать более высокие скорости дымовых газов.
Однако необходимо иметь в виду, что при уменьшении диаметра печных труб увеличивается скорость сырья и, следовательно, повышается сопротивление перемещению нагреваемого потока. Для снижения сопротивления при применении печных труб меньшего диаметра движение нагреваемого продукта, как правило, осуществляется двумя или несколькими параллельными потоками.
Эффективность передачи тепла в камере конвекции может быть повышена путем оребрения наружной поверхности конвекционных труб, так как при этом увеличивается поверхность соприкосновения дымовых газов с трубами и обеспечивается передача большого количества тепла.
Передача тепла конвекцией зависит также от температурного напора, т.е. от разности температур между дымовыми газами и нагреваемым сырьем. Обычно величина температурного напора убывает в направлении движения дымовых газов. Так, при повышении температуры сырья на один градус дымовые газы охлаждаются на 5-7 °С. Наибольший температурный напор в камере конвекции наблюдается при входе дымовых газов в камеру, а наименьший при их выходе. Количество тепла, поглощаемого конвективными трубами, убывает также в направлении движения дымовых газов.
Рисунок 1.2 – Схема движения дымовых газов
а – коридорное расположение труб; б – шахматное расположение труб
Доля тепла, передаваемого излучением в камере конвекции, значительно меньше, чем в камере радиации, как вследствие более низкой температуры дымовых газов, так и из-за меньшей толщины излучаемого газового потока. Эффективная толщина газового слоя в камере конвекции предопределяется расстоянием между смежными рядами труб. Снижение температуры дымовых газов в направлении их движения, естественно, вызывает также и уменьшение передачи тепла излучением от них.
Конвекционные трубы, расположенные в первых рядах по ходу дымовых газов, получают больше тепла, как за счет конвекции, так и за счет излучения и поэтому в отдельных случаях их теплонапряженность может быть выше теплонапряженности радиантных труб.
1.2 Классификация трубчатых печей
Классификация печей – это упорядоченное разделение их в логической последовательности и соподчинении на основе признаков содержания на классы, виды, типы и фиксирование закономерных связей между ними с целью определения точного места в классификационной системе, которое указывает на их свойства. Она служит средством кодирования, хранения и поиска информации, содержащейся в ней, дает возможность распространения обобщенного опыта, полученного теорией и промышленной практикой эксплуатации печей, в виде готовых блоков, комплексных типовых решений и рекомендаций для разработки оптимальных конструкций печей и условий осуществления в них термотехнологических и теплотехнических процессов.
Главными и естественными по степени существенности основаниями для классификации печей в логической последовательности являются следующие признаки:
– технологические;
– теплотехнические;
– конструктивные.
1.2.1 Технологические признаки
По технологическому назначению различают печи нагревательные и реакционно-нагревательные.
В первом случае целью является нагрев сырья до заданной температуры. Это большая группа печей, применяемых в качестве нагревателей сырья, характеризуется высокой производительностью и умеренными температурами нагрева (300-500°С) углеводородных сред (установки АТ, АВТ, ГФУ).
Во втором случае кроме нагрева в определенных участках трубного змеевика обеспечиваются условия для протекания направленной реакции. Эта группа печей многих нефтехимических производств одновременно с нагревом и перегревом сырья используется в качестве реакторов. Их рабочие условия отличаются параметрами высокотемпературного процесса деструкции углеводородного сырья и невысокой массовой скоростью (установки пиролиза, конверсии углеводородных газов и др.).
1.2.2 Теплотехнические признаки
По способу передачи тепла нагреваемому продукту печи подразделяются:
– на конвективные;
– радиационные;
– радиационно-конвективные.
Конвективные печи – это один из старейших типов печей. Они являются как бы переходными от нефтеперегонных установок к печам радиационно-конвективного типа. Практически в настоящее время эти печи не применяются, так как по сравнению с печами радиационными или радиационно-конвективными они требуют больше затрат как на их строительство, так и во время эксплуатации. Исключение составляют только специальные случаи, когда необходимо нагревать чувствительные к температуре вещества сравнительно холодными дымовыми газами.
Печь состоит из двух основных частей – камеры сгорания и трубчатого пространства, которые отделены друг от друга стеной, так что трубы не подвергаются прямому воздействию пламени, и большая часть тепла передается нагреваемому веществу путем конвекции. Чтобы предотвратить прожог первых рядов труб, куда поступают сильно нагретые дымовые газы из камеры сгорания, и чтобы коэффициент теплоотдачи удерживался в пределах, приемлемых по технико-экономическим соображениям, при сжигании используется значительный избыток воздуха или 1,5-4-кратная рециркуляция остывших дымовых газов, отводимых из трубчатого пространства и нагнетаемых воздуходувкой снова в камеру сгорания. Одна из конструкций конвективной печи показана на рисунке 1.3.
Дымовые газы проходят через трубчатое пространство сверху вниз. По мере падения температуры газов соответственно равномерно уменьшается поперечное сечение трубчатого пространства, при этом сохраняется постоянная объемная скорость продуктов сгорания.
Рисунок 1.3 – Конвективная печь
1 – горелки; 2 – камера сгорания; 3 – канал для отвода дымовых газов; 4 – камера конвекции
В радиационной печи все трубы, через которые проходит нагреваемое вещество, помещены на стенах камеры сгорания. Поэтому у радиационных печей камера сгорания значительно больше, чем у конвективных. Все трубы подвергаются прямому воздействию газообразной среды, которая имеет высокую температуру. Этим достигается:
а) уменьшение общей площади теплоотдачи печи, так как количество тепла, отданного единице площади труб, путем радиации при одинаковой температуре среды (особенно при высоких температурах этой среды), значительно больше, чем количество тепла, которое можно передать путем конвекции;
б) хорошая сохранность футеровки за трубчатыми змеевиками, благодаря тому, что снижается ее температура, во-первых, за счет прямого закрытия части ее трубами, во-вторых, за счет отдачи тепла излучением футеровкой более холодным трубам.
Обычно нецелесообразно закрывать все стены и свод трубами, так как этим ограничивается теплоизлучение открытых поверхностей, а в результате уменьшается общее количество тепла, отдаваемого единицей площади труб.
Например, у современных типов кубовых печей отношение эффективной открытой поверхности к общей внутренней поверхности печи колеблется в пределах 0,2-0,5.
Чисто радиационные печи из-за простоты конструкции и большой тепловой нагрузки труб имеют самые низкие капитальные затраты на единицу переданного тепла. Однако они не дают возможности использовать тепло продуктов сгорания, как это имеет место у радиационно-конвективньгх печей. Поэтому радиационные печи работают с меньшей тепловой эффективностью.
Радиационные печи применяются при нагреве веществ до низких температур (приблизительно до 300 °С), при небольшом их количестве, при необходимости использования малоценных дешевых топлив и в тех случаях, когда особое значение придается низким затратам на сооружение печи.
Радиационно-конвективная печь имеет две отделенные друг от друга секции: радиационную и конвективную. Большая часть используемого тепла передается в радиационной секции (обычно 60-80 % всего использованного тепла), остальное – в конвективной секции.
Конвективная секция служит для использования физического тепла продуктов сгорания, выходящих из радиационной секции обычно с температурой 700-900°С, при экономически приемлемой температуре нагрева 350-500°С (соответственно температуре перегонки).
Величина конвективной секции, как правило, подбирается с таким расчетом, чтобы температура продуктов сгорания, выходящих в боров, была почти на 150°С выше, чем температура нагреваемых веществ при входе в печь. Поэтому тепловая нагрузка труб в конвективной секции меньше, чем в радиационной, что обусловлено низким коэффициентом теплоотдачи со стороны дымовых газов.
С внешней стороны иногда эти трубы снабжаются добавочной поверхностью – поперечными или продольными ребрами, шипами и т. п.
Почти все печи, эксплуатируемые в настоящее время на нефтеперерабатывающих заводах, являются радиационно-конвекционными. В печах такого типа трубные змеевики размещены и в конвекционной и в радиантной камерах.