Смекни!
smekni.com

Технологический процесс изготовления корпуса приспособления для крепления оправок с хвостовиком HSK-63 (стр. 12 из 19)

Сила света I – пространственная плотность светового потока, которая характеризует неравномерность распределения светового потока в окружающем пространстве. За единицу силы света принята кандела (кд).

Освещённость Е – характеризует поверхностную плотность светового потока и определяется отношением светового потока, падающего на поверхность, к площади этой поверхности. За единицу освещённости принят люкс (лк).

Яркость поверхности Яп – поверхностная плотность света, которая определяется как отношение силы света в данном направлении к проекции светящейся поверхности на плоскость, перпендикулярную направлению наблюдения. За единицу яркости принята кандела на квадратный метр(кд/м2).

При расчёте искусственного освещения последовательно решается ряд вопросов.

1. Выбор типа источника света. Согласно рекомендациям [56], с учётом того, что температура в помещении не понижается ниже 10°С, а напряжение в сети не падает ниже 90% от номинального, то отдадим предпочтение экономичным газоразрядным люминесцентным лампам.

2. Выбор системы освещения. В нашем случае применяем общее освещение.

3. Выбор типа светильника. Проведя анализ выпускаемых промышленностью светильников [55], [56]считаем, что наиболее подходящим для цеха будут светильники типа ОД.

4. Распределение светильников и определение их количества. Высота подвеса светильников в цехе h = 3 м. Отношение расстояния между центрами светильников к высоте их подвеса над рабочей поверхностью по таблице 10 [55] равно для светильников типа ОД kх = l/h = 1,4. Зная эти величины, рассчитаем расстояние между центрами светильников:

(13.1)

5. Определение нормируемой освещённости на рабочем месте. По таблице 11 [56]определяем норму освещённости, в зависимости от характеристики зрительной работы, разряда и подразряда зрительной работы.В нашем случае E = 250 лк.

6. Расчёт мощности источника света. Для расчёта общего освещения горизонтальной поверхности используют метод светового потока [55], [56]. Основное уравнение метода:

, (13.2)

где Ф – световой поток одной лампы, лм;

E – минимальная нормируемая освещённость, лк;

S – площадь помещения, м2;

k – коэффициент запаса, учитывающий старение ламп, запыление и загрязнение светильников;

z - отношение средней освещённости к минимальной (в большинстве случаев z = 1,1…1,5);

N – число светильников;

h - коэффициент использования светового потока, зависящий от КПД светильника, коэффициента отражения потока, стен, высоты подвеса светильников и размеров помещений;

При решении задачи разработке мероприятий по охране труда на производстве, как правило, при расчёте искусственного освещения определяют необходимое количество светильников в помещении. Из формулы 13.2 выражаем количество светильников N, получаем:

. (13.3)

Далее находим площадь помещения S = 576 м2; коэффициент запаса k = 1,5 – выбирается по таблице 13 [56]; коэффициент неравномерности освещённости в пределах z = 1,1…1,5; значение светового потока Ф = 4250 лм – выбирается по таблице 14 [56], в зависимости от типа источника света, тип ЛД 80-4. Для определения значения коэффициента использования светового потока необходимо определить индекс помещения.

, (13.4)

где b – ширина помещения, м;

l – длина помещения, м;

h – высота подвеса светильника над рабочей поверхностью, м.

Таким образом

Значение коэффициента использования светового потока h = 90% - выбирается по таблице 17 и 18 [56], в зависимости от типа источника света, индекса помещения и коэффициента отражения.

В формуле 13.3 можно учесть количество ламп в светильнике. В нашем случае их две, поэтому знаменатель формулы необходимо помножить на два:

.

Принимаем N равное не менее 33 штук.

7. Разработка проектировочной схемы расположения светильников. В проектировочной схеме следует указать значение величины l – расстояние от крайних светильников до стен; L – расстояние между соседними светильниками (рассчитано ранее). Величину l находят по зависимости l = 0,3…0,5L = 0,5*4,2 = 2,1 м. Схема расположения светильников приведена на рисунке 13.1.

Рис. 13.1. Схема расположения светильников

11.3.2 Расчет механической вентиляции

Под вентиляционной системой понимается совокупность различных по своему назначению вентиляционных участков, способных обслуживать отдельные помещения и корпус. Вентиляционные системы, используемые в производственных корпусах, можно представить в виде структурной схемы рисунок 11.2. [55], [56].

При естественной вентиляции воздухообмен осуществляется двумя способами: неорганизованно, посредством проветривания (через окна и двери в помещении) и инфильтрации (поступление воздуха через поры и щели в окнах и дверных проемах), и организованно, посредством аэрации и с помощью дефлекторов.


Рис. 11.2. Структурная схема систем вентиляции

Аэрацией является организованный естественный воздухообмен, осуществляемый за счет ветрового давления и регулируемый в соответствии с внешними метеорологическими условиями (рис.2) [56].

Преимуществом аэрации является то, что большие объемы воздуха (до нескольких миллионов кубических метров в час) подаются и удаляются без применения вентиляторов. Кроме того, система аэрации является мощным средством для борьбы с избытком выделения теплоты в производственных помещениях. Недостатком аэрации является снижение эффективности в летнее время вследствие повышения температуры наружного воздуха, особенно в безветренную погоду. Кроме того, поступающий воздух в помещение не очищается и не охлаждается.

Вентиляция с помощью дефлекторов применяется в том случае, если неорганизованного воздухообмена (проветривание или инфильтрация) для удаления вредных выделений из помещения бывает недостаточно. В настоящее время наибольшее распространение получил дефлектор ЦАГИ (рис.3) [56].

В системах искусственной, механической вентиляции движение воздуха осуществляется вентиляторами, а в некоторых случаях эжекторами. На схеме приведена классификация механической вентиляции. По месту расположения механическая вентиляция бывает общеообменная (схема воздуха происходит во всем объеме помещения), местная (локальная), когда обмен воздуха происходит в местах образования вредных выбросов, и комбинированная (наряду с общим воздухообменом локально удаляется загрязненный воздух от источника выделения).

По способу подачи воздуха механическая вентиляция бывает: приточной, вытяжной и приточно-вытяжной. Схемы общеобменной вентиляции приведены на рисунке 11.3. [55], [56].

Рис. 11.3. Схема механической вентиляции

Проведем расчет необходимого количества воздуха для цеха методом кратности воздухообмена К, применяемый для ориентировочных расчетов, когда не известны виды и количества выделяющихся вредных веществ [55].

- отношение воздухообмена, создаваемого в помещении, к внутреннему объему помещения. Показывает, сколько раз в течение часа весь объем помещения заполняется вводимым в помещение приточным воздухом.

, (13.5)

где S – площадь помещения, м2;

h – высота помещения, м;

V – объём помещения, м3.

Для определения воздухообмена из условия удаления из помещения углекислоты СО2 используют формулу:

, (13.6)

где L – воздухообмен, м3/ч;

G – количество углекислоты, выделяющейся в помещении, при легкой физической работе G = 30 л/ч;

X1 = 0,6 л/м3 – концентрация СО2 в приточном воздухе для города;

X2 = 1 л/м3 – допустимая концентрация СО2 в воздухе помещения с постоянным пребыванием людей.

Тогда,

(13.7)

где 25 – кол-во рабочих, занятых в работе.

Количество приточного воздуха должно быть не менее 75 м3/ч на одного человека, при объеме помещения, приходящегося на него, менее 138 м3 . Если естественное проветривание невозможно, то в такие помещения нужно подавать не менее 60 м3/ч на одного человека.

Среди операций технологического процесса изготовления цанги присутствуют операции шлифования, на которых воздух загрязняется абразивной пылью, поэтому следует предусмотреть местную вытяжную вентиляцию рисунок 5 [56].

Для улавливания вредностей непосредственно в местах их образования применяется местная вытяжная вентиляция. Вытяжная вентиляция выполняется, как правило, в виде местных отсосов – вытяжных шкафов, камер, зонтов, панелей, щелей, бортовых отсосов.

Расчёт вытяжных шкафов. Объём воздуха, удаляемого вытяжными шкафами, определяется по формуле [56].

, (13.8)

где F – площадь открытого проёма, м2;

V – средняя скорость движения всасываемого воздуха в открытом проёме, м/с, она колеблется в пределах 0,3…0,25 м/с в зависимости от токсичности удаляемых выделений.