Смекни!
smekni.com

Технологический процесс изготовления корпуса расточной оправки (стр. 14 из 25)

где Cp, x, y, n – постоянная и показатели степени для конкретных условий обработки, выбираются по таблице. При обработке стали Р6М5 резцом, оснащённым пластиной из твёрдого сплава, они равны:

для расчёта Pz → Cp = 300; x = 1,0; y = 0,75; n = -0,15;

для расчёта Py → Cp = 243; x = 0,9; y = 0,60; n = -0,30;

для расчёта Px → Cp = 339; x = 1,0; y = 0,50; n = -0,40.

Поправочный коэффициент Кр представляет собой произведение ряда коэффициентов, учитывающих фактические условия резания:

, (9.2)

где

коэффициент, учитывающий влияние качества обрабатываемого материала на силовые зависимости (np = 1,35 - для расчёта Py; np = 0,75 - для расчёта Pz; np = 1,0 - для расчёта Px) [4];

коэффициент, учитывающий влияние угла в плане резца на силы, равный при φ = 60°, для расчёта Pz
; для расчёта Py
; для расчёта Px
[4];

коэффициент, учитывающий влияние переднего угла резца на силы, равный при γ = -2°, для расчёта Pz
; для расчёта Py
; для расчёта Px
[4];

коэффициент, учитывающий влияние угла наклона режущей кромки резца на силы, равный при λ = -3°, для расчёта Pz
; для расчёта Py
; для расчёта Px
[4].

коэффициент, учитывающий влияние угла наклона режущей кромки резца на силы, равный при r = 2 мм, для расчёта Pz
; для расчёта Py
; для расчёта Px
[4].

Подставим все данные в формулы:

для расчёта Pz

;

для расчёта Py

;

для расчёта Px

.

Подставим данные в формулу (8.1)

;

;

.

9.3 Расчёт усилия зажима

В процессе обработки заготовки на неё воздействует система сил. С одной стороны действуют составляющие силы резания, которые стремятся вырвать заготовку из кулачков, с другой – сила зажима препятствующая этому. Из условия равновесия моментов данных сил и с учётом коэффициента запаса определяются необходимые зажимное и исходное усилия. В данной схеме принимаем консольное закрепление заготовки, так как

[22], [23]. Суммарный крутящий момент от касательной составляющей силы резания стремится провернуть заготовку в кулачках, и равен для данного примера:

. (9.3)

Повороту заготовки препятствует момент силы зажима, определяемый следующим образом [22], [24]:

, (9.4)

где W – суммарное усилие зажима, приходящееся на три кулачка, Н;

f – коэффициент трения на рабочей поверхности постоянного кулачка;

d1 – диаметр обрабатываемой поверхности;

d2 – диаметр поверхности, за который крепится заготовка.

Из равенства моментов МР и Мзопределим необходимое усилие зажима, препятствующее провороту заготовки в кулачках.

. (9.5)

Значение коэффициента запаса К, в зависимости от конкретных условий выполнения технологической операции определяется по формуле [22].

, (9.6)

где К0 = 1,5 – гарантированный коэффициент запаса;

К1 – коэффициент учитывающий увеличение сил резания из-за случайных неровностей на обрабатываемых поверхностях заготовки. При чистовой обработке К1 = 1,0;

К2 - коэффициент учитывающий увеличение сил резания вследствие затупления режущего инструмента (выбираем по таблице в зависимости от метода обработки и материала заготовки [22]: К2 = 1,0;

К3 - коэффициент, учитывающий увеличение сил резания при прерывистом резании: для непрерывного резания К3 = 1,0;

К4 - коэффициент характеризующий постоянство силы, развиваемой зажимным механизмом: для механизированных приводов К4 = 1,0;

К5 - коэффициент, характеризующий эргономику немеханизированного зажимного механизма (удобство расположения органов зажима и т. д.): для механизированных приводов К5 = 1.

К6 – вводится в расчёт только при наличии моментов, стремящихся повернуть заготовку, установленной плоской ТБ на опоры – штыри.

В данном случае коэффициент К равен:

.

Коэффициент трения f между заготовкой и сменными кулачками зависит от состояния их рабочей поверхности (выбирается по таблице [22]): примем форму рабочей поверхности кулачка с кольцевыми канавками f = 0,5.

Подставим в формулу (9.5) все исходные данные:

.

Сила Py стремится вывернуть заготовку из кулачков относительно оси, создавая момент:

Мр''= Py'· l' (9.7)

Необходимо при расчете момента от силы Py учесть тот факт, что заготовка установлена в центрах. Поэтому повороту заготовки относительно оси у будет препятствовать как момент от силы зажима, так и задний центр. В данном случае большим по значению будет момент от силы Pz, стремящийся провернуть заготовку в кулачках. В дальнейших расчетах будем учитывать максимальный момент создаваемый усилием. Следовательно, принимаем наихудший случай: W = 9487,3 Н.

9.4 Расчет зажимного механизма патрона

Приступая к расчету зажимного механизма необходимо определиться с его конструкцией. В данном патроне применим конструкцию клинорычажного зажимного механизма. Данный механизм выбран не случайно. Он позволяет, во-первых, создать необходимое усилие зажима заготовки при определенном усилие на штоке гидроцилиндра, а во-вторых, сама конструкция патрона предопределяет применение именно этого зажимного механизма.

Клинорычажный механизм представляет собой клин с определенным углом, который упирается в неравноплечие угловые рычаги, смонтированные в корпусе патрона на неподвижных осях. При расчете клинорычажного зажимного механизма определяется усилие Q, создаваемое силовым приводом, которое зажимным механизмом увеличивается и передается постоянному кулачку [22]:

, (9.8)

где ic – передаточное отношение по силе зажимного механизма (выигрыш в силе), iс = А/Б;

А и Б – плечи рычага, А = 80 мм, Б = 40 мм.

W – усилие зажима на кулачках; W = 9487,3 Н;

h - КПД рычажного зажимного механизма, h = 0,9;

a - угол скоса клина, a = 20°;

j - угол трения, j = 5°.

Передаточное отношение для клинорычажного механизма равно:

, (9.9)

Согласно формуле (9.8):

Клинорычажный зажимной механизм рекомендуется применять в патронах, наружный диаметр которых менее 200 мм, при больших диаметрах предпочтение отдается рычажному зажимному механизму.

На этапе расчета наружный диаметр патрона можно определить по формуле:

Дп @ d2+2Hк, (9.10)

где Нк – длина постоянного кулачка.

Дп @ 10+2*62 = 134 мм.

9.5 Расчет силового привода

Для создания исходного усилия Q используется силовой привод, устанавливаемый на задний конец шпинделя. В его конструкции можно выделить силовую часть, вращающуюся совместно со шпинделем и муфту для подвода рабочей среды. В качестве приводов наибольшее применение получили пневматический и гидравлический вращающиеся цилиндры.

В данной работе вначале следует попытаться применить пневматический привод, так как в любом производстве имеются трубопроводы для подачи сжатого воздуха. Диаметр поршня пневмоцилиндра определяется по формуле [22]:

, (9.11)

где Р – избыточное давление воздуха, принимаемое в расчетах равным 0,4 МПа.