Внедрение методик автоматизированного проектирования позволяет сделать и выбрать оптимальную конструкцию узлов, что в итоге дает не только чертеж машины, но и её трёхмерную модель.
11.1.2 Цель работы, поставка и порядок выполнение задачи
Целью данной дипломной работы является разработка специальной методики и создание на ёё основе системы для автоматизированного проектирования формовочного агрегата и его частей с поочередным расчётом всех его узлов и их последовательным трёхмерным моделированием и проведением трёхмерной сборки, как отдельных узлов, так и всего агрегата в целом.
Разработанная методика и сам процесс трёхмерного автоматизированного проектирования в дальнейшем будет рассмотрена на примере импульсной формовочной машине высокого давления.
Для выполнения поставленной задачи необходимо решить следующие задачи:
1) Разработка общей методики расчётов и моделей для трёхмерного проектирования и принципов использования нижеизложенных пунктов.
2) Составление конкретных математических и алгоритмических моделей для автоматизированного проектирования узлов и деталей формовочной машины;
3) Разработать программу для ЭВМ, которая позволяет пользователю в интерактивном режиме производить ввод исходных начальных данных, а также полный их контроль и изменение в процессе всех расчётов; а на остове полученных конструктивных размеров производится дальнейшее автоматическое построение готовых трёхмерных деталей, узлов и машины в целом. Для некоторого упрощения поставленной задачи и получения реальной возможности в создании программы автоматизированного проектирования выбранной машины условно принимаем, что разработка общей методики расчётов и трёхмерных построений будет производиться для всей формовочной машины в целом, а программа будет предназначена лишь только для импульсных головок как высокого, так и низкого давлений.
При проектировании технических устройств большое значение имеет определение оптимальных вариантов конструкций машин и аппаратов, режимов их работы. Появление и быстрое развитие электронной техники сделало вешение этих задач.
Под задачами оптимального проектирования понимается: определение конструктивных параметров всех узлов, деталей и их компоновок в машинах, возможности использования стандартных изделий в машинах (цилиндров, электрических двигателей и т.д.), расчет элементов конструкций литейных машин при заданной производительности и многое другое.
Исходными данными при проектировании изделий является указанные их номинальных параметров, стандартных требований и технологий изготовления, изделия, как в целом, так и по отдельности его частей.
При оптимальном проектировании необходимо определить и обосновать критерий оптимальности проектируемого изделия и четко выделить показатели и характеристики, принимаемые в качестве ограничений. Поскольку конструктор нередко формирует свое представление о критерии оптимальности и оптимальном варианте изделия в процессе проектирования, целесообразно корректировать определение комплексного критерия по результатам серии оптимизационных расчетов. Сложность проектируемых инженерно-технических объектов приводит к необходимости использования, значительного числа методов оптимизации, а также формирования комбинированных алгоритмов, ориентированных на изменение методов поиска в зависимости от геометрии допустимой области и скорости убывания (возрастания) критерия оптимальности. Реализация указанных процедур на ПЭВМ требует создания сложного программного комплекса. Основными требованиями к такому комплексу являются:
- гибкая система ввода-вывода информации, позволяющая вносить оперативные изменения в модель проектируемого объекта, а также исходные данные, как по результатам вычислений, так и в процессе счета (система должна работать как в режиме пакетной обработки, так и в диалоговом режиме); обеспечение эффективного использования алгоритмов оптимизации, включенных в систему, путем реализации процессов адаптации при поиске, предусматривающих своевременную смену алгоритмов в процессе решения задачи оптимального проектирования;
- возможность расширения системы за счет включения в нее алгоритмов прошедших испытания на тестовых и практических задачах; простота управляющего языка системы, с целью сделать систему допустимой для инженеров -проектировщиков, не знакомых с программированием на ПЭВМ;
- возможность использования программного комплекса автоматизации оптимального проектирования в системах коллективного пользования. Система управления комплексом программ автоматизированного оптимального проектирования, таким образом, может рассматриваться как некоторая проблемно-ориентированная операционная система. Она предназначена для поиска оптимума конструктивных параметров при произвольных ограничениях на пределы их изменения. Структура программного комплекса, реализующего оптимальное проектирование объектов на ПЭВМ, представлена на рисунке – 12.
Рисунок 12- структура программного комплекса оптимального проектирования
Система по минимальным управляющим указаниям со стороны пользователя (инженера-проектировщика) должна выполнять следующие операции: формировать модель объекта, выбирать для каждой конкретной задачи проектирования наиболее эффективные методы решения и осуществлять их применение в требуемой последовательности.
Для формирования рабочей модели объекта и поисковой программы система должна использовать следующие признаки, определяющие, по существу, характер и особенности решаемой задачи оптимального проектирования:
- модификацию проектируемого объекта (указание используемых модулей программной модели объекта);
- список ограничений;
- критерий оптимальности (в случае нескольких критериев должны быть указаны отношения приоритета);
- указание о дискретной или непрерывной области изменения отдельных конструктивных параметров;
- требования к точности решения.
Исходными данными при проектировании формовочной машины являются габариты опок, необходимая производительность формовочной машины, прочность формовочной смеси, масса отливки, габариты отливки, серийность производства. Общая постановка задачи оптимального проектирования формовочной машины предполагает одновременный поиск оптимальных параметров (в частности, размеров) как активной, так и конструктивной частей машины. Однако при этом задача усложняется.
Таким образом, чем точнее будет сделан расчет при помощи ПЭВМ, тем точнее будет результат расчетов, значения будут оптимальными, необходимая надежность будет достигнута, конструкция машины в итоге будет спроектирована.
11.1.3 Обоснование выбора направленности методики и программы
В данное время существует большое количество способов уплотнение формовочной смеси, такие как встряхивание, прессование, вакуум-пленочная формовка, специальные виды литья. Но в данной работе за основу взят воздушно- импульсный способ уплотнения потому, что:
Процесс воздушно-импульсного формообразования обеспечивает:
· стабильную повторяемость уплотнения независимо от конфигурации модели;
· снижение массы отливок (в среднем на 12-18 %) за счет повышения размерной точности формы, рационального распределения плотности смеси по высоте полуформы;
· снижение брака по вине формы (в среднем на 5-7%);
· снижение трудоемкости по очистке литья;
· отсутствует необходимость переналадки оборудования при переходе на другую номенклатуру;
· сохраняются существующие модели и формовочные смеси.
В настоящей работе большое внимание уделено методике расчета импульсных головок как низкого так и высокого давления, т.к в данное время отсутствуют какие- либо единые методики, и все разработчики при проектировании используют «метод эксперимента», который слишком дорогостоящ, и занимаем много времени.
11.1.4 Методика автоматизированного проектирования машины
Автоматизированное проектирование начинается с составления структурной схемы формовочной машины.
При разработке общей методики расчётов и моделей для трёхмерного проектирования узлов и деталей формовочной машины использованы различные методики:
1. математическое моделирование;
2. алгоритмическое моделирование;
3. статистическое моделирование.
Согласно различным теориям математического моделирования [7, 8] проектированию программного обеспечения предшествует аналитическое моделирование. Которое представляет множество функциональных и логических отношений, которые полностью описывают функционирование технической системы или ее частей и сводящееся к применению аппарата аналитической механики и методов динамических аналогий, и цифровое моделирование, представляющее замкнутую модель системы алгебраических уравнений, описывающих преобразование входных данных в выходные.
Разработка математической модели начинается с построения расчетной схемы. В данном случае формовочную машину представляем в виде объекта, состоящего из ряда сборочных единиц, логически описать, которые не вызвало затруднений и поддающиеся упрощению и схематизации:
1 импульсная головка;
2 станина;
3 траверса;
4 колонны.
5 Рольганги подачи опок.
6 Рольганги подмодельных плит.
Рассмотрим методики математических моделей названных сборочных единиц.