Смекни!
smekni.com

Технология металлов и конструкционные материалы (стр. 2 из 4)

Для снижения смачиваемости водой лакокрасочные покрытия иногда, в свою очередь, защищают восковыми составами или кремнийорганическими соединениями. Лаки и краски наиболее эффективны для защиты от атмосферной коррозии. В большинстве случаев они непригодны для защиты подземных сооружений и конструкций, так как трудно предупредить механические повреждения защитных слоев при контакте с грунтом. Опыт показывает, что срок службы лакокрасочных покрытий в этих условиях невелик. Намного практичнее оказалось применять толстослойные покрытия из каменноугольной смолы (битума) [6, с. 89].

В некоторых случаях пигменты красок выполняют также роль ингибиторов коррозии. К числу таких пигментов относятся хроматы стронция, свинца и цинка (SrCrO4, PbCrO4, ZnCrO4).

Часто под лакокрасочный слой наносят слой грунтовки. Пигменты, входящие в ее состав, также должны обладать ингибиторными-свойствами. Проходя через слой грунтовки, вода растворяет некоторое количество пигмента и становится менее коррозионноактивной. Среди пигментов, рекомендуемых для грунтов, наиболее эффективным признан свинцовый сурик Рb3O4.

Вместо грунтовки иногда проводят фосфатирование поверхности металла. Для этого на чистую поверхность кистью или напылителем наносят растворы ортофосфатов железа (III), марганца (II) или цинка (II), содержащих и саму ортофосфорную кислоту H3PO4. В нашей стране для этой цели применяют 3%-ный раствор смеси кислых солей Fe(H2PO4) 3 и Мn(H2PO4) 2 с добавками KNO3 или Cu(NO3) 2 в качестве ускорителей. В заводских условиях фосфатирование ведут при 97…99 °C в течение 30…90 мин. В образование фосфатного покрытия вносят вклад металл, растворяющийся в фосфатирующейся смеси, и оставшиеся на его поверхности оксиды.

Для фосфатирования поверхности стальных изделий разработано несколько различных препаратов. Большинство из них состоит из смесей фосфатов марганца и железа. Возможно, наиболее распространенным препаратом является «мажеф» – смесь дигидрофосфатов марганца Mn(H2PO4) 2, железа Fe(H2PO4) 2 и свободной фосфорной кислоты. Название препарата состоит из первых букв компонентов смеси. По внешнему виду мажеф – это мелкокристаллический порошок белого цвета с соотношением между марганцем и железом от 10:1 до 15:1. Он состоит из 46…52% P2O5; не менее 14% Mn; 0,3…3,0% Fe. При фосфатировании мажефом стальное изделие помещается в его раствор, нагретый примерно до 100 °C. В растворе происходит растворение с поверхности железа с выделением водорода, а на поверхности образуется плотный, прочный и малорастворимый в воде защитный слой фосфатов марганца и железа серо-черного цвета. При достижении толщины слоя определенной величины дальнейшее растворение железа прекращается. Пленка фосфатов защищает поверхность изделия от атмосферных осадков, но мало эффективна от растворов солей и даже слабых растворов кислот. Таким образом, фосфатная пленка может служить лишь грунтом для последующего нанесения органических защитных и декоративных покрытий – лаков, красок, смол. Процесс фосфатирования длится 40…60 мин. Для ускорения фосфатирования в раствор вводят 50…70 г./л нитрата цинка. В этом случае время фосфатирования сокращается в 10…12 раз.

В производственных условиях используют также электрохимический способ – обработку изделий переменным током в растворе фосфата цинка при плотностях тока 4 А/дм2 и напряжении 20 В и при температуре 60…70 °C. Фосфатные покрытия представляют собой сетку плотносцепленных с поверхностью фосфатов металлов. Сами по себе фосфатные покрытия не обеспечивают надежной коррозионной защиты. Преимущественно их используют как основу под окраску, обеспечивающую хорошее сцепление краски с металлом. Кроме того, фосфатный слой уменьшает коррозионные разрушения при образовании царапин или других дефектов.

Для защиты металлов от коррозии используют стекловидные и фарфоровые эмали – силикатные покрытия, коэффициент теплового расширения которых должен быть близок к таковому для покрываемых металлов. Эмалирование осуществляют нанесением на поверхность изделий водной суспензии или сухим напудриванием. Вначале на очищенную поверхность наносят грунтовочный слой и обжигают его в печи. Далее наносят слой покровной эмали и обжиг повторяют. Наиболее распространены стекловидные эмали – прозрачные или заглушенные. Их компонентами являются SiO2 (основная масса), B2O3, Na2O, PbO. Кроме того, вводят вспомогательные материалы: окислители органических примесей, оксиды, способствующие сцеплению эмали с эмалируемой поверхностью, глушители, красители. Эмалирующий материал получают сплавлением исходных компонентов, измельчением в порошок и добавлением 6…10% глины. Эмалевые покрытия в основном наносят на сталь, а также на чугун, медь, латунь и алюминий [3, с. 101].

Эмали обладают высокими защитными свойствами, которые обусловлены их непроницаемостью для воды и воздуха (газов) даже при длительном контакте. Их важным качеством является высокая стойкость при повышенных температурах. К основным недостаткам эмалевых покрытий относят чувствительность к механическим и термическим ударам. При длительной эксплуатации на поверхности эмалевых покрытий может появиться сетка трещин, которая обеспечивает доступ влаги и воздуха к металлу вследствие чего и начинается коррозия.

Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью, так как покрываются плотной оксидной пленкой. Покрывающий слой наносят различными методами: кратковременным погружением в ванну с расплавленным металлом (горячее покрытие), электроосаждением из водных растворов электролитов (гальваническое покрытие), напылением (металлизация), обработкой порошками при повышенной температуре в специальном барабане (диффузионное покрытие), с помощью газофазной реакции, например 3CrCl2 + 2Fe – [1000 °C] → 2FeCl3 + 3Cr (в сплаве с Fe).

Имеются и другие методы нанесения металлических покрытий, например, разновидностью диффузионного способа защиты металлов является погружение изделий в расплав хлорида кальция CaCl2, в котором растворены наносимые металлы.

В производстве широко используют химическое нанесение металлических покрытий на изделия. Процесс химического металлирования является каталитическим или автокаталитическим, а катализатором является поверхность изделия. Раствор, используемый для металлизации, содержит соединение наносимого металла и восстановитель. Поскольку катализатором является поверхность изделия, выделение металла и происходит именно на ней, а не в объеме раствора. В автокаталитических процессах катализатором является металл, наносимый на поверхность. В настоящее время разработаны методы химического покрытия металлических изделий никелем, кобальтом, железом, палладием, платиной, медью, золотом, серебром, родием, рутением и некоторыми сплавами на основе этих металлов. В качестве восстановителей используют гипофосфит и боргидрид натрия, формальдегид, гидразин. Естественно, что химическим никелированием можно наносить защитное покрытие не на любой металл. Чаще всего ему подвергают изделия из меди.

Металлические покрытия делят на две группы: коррозионностойкие и протекторные. Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. Они более электроположительны по отношению к железу, т.е. в электрохимическом ряду напряжений металлов стоят правее железа. Во вторую группу входят цинк, кадмий, алюминий. По отношению к железу они более электроотрицательны, т.е. в ряду напряжений находятся левее железа.

4. Описать сущность процесса прокатки и указать область ее применения

Прокатное производство – это третий передел металлургического производства, где слитки или литую заготовку перерабатывают в готовые изделия, т.е. прокат различных форм и размеров. Сущность процесса прокатки состоит в обработке металла давлением для придания ему требуемой формы и размеров, для чего слиток или заготовку пропускают нужное количество раз между вращающимися валками определенного профиля.

Все прокатные изделия можно разделить на ряд основных видов: сортовые профили, лист, трубы и специальные виды проката. К сортовым типам профиля относятся квадрат, круг, уголок, рельсы, двутавры, швеллеры и др. К специальным видам проката относятся шпунты, шары, оси и др.

Длительный период в развитии металлургии прокатный передел считался завершающим в процессе производства. В последнее время все большее распространение получает строительство цехов так называемого четвертого передела: термических, метизных, калибровочных, холодной прокатки, гнутых профилей и других, где совершенствуется форма и физико-химические свойства прокатных изделий, что обеспечивает значительный экономический эффект у потребителей проката [1, 7 и др.].

Прокатные станы отличаются большим разнообразием конструкций и технологических особенностей. Различают станы обжимные (блюминги, слябинги), заготовочные, рельсобалочные, крупно-, средне- и мелкосортные, толстолистовые, тонколистовые, горячей и холодной прокатки, и др. По характеру движения металла в процессе прокатки различают станы реверсивные, полунепрерывные и непрерывные. В последнее время отдается предпочтение непрерывным станам, внедряется новый способ непрерывной прокатки – бесконечная прокатка, когда заготовки сваривают встык в потоке производства и ведут прокатку без перерывов.